• Title/Summary/Keyword: Weibull parameters

Search Result 324, Processing Time 0.023 seconds

Reliability Analysis of Degradation Data for LEDs (LED 열화데이터의 신뢰성 분석)

  • Park, Chang-Kyu
    • Journal of Applied Reliability
    • /
    • v.9 no.1
    • /
    • pp.59-69
    • /
    • 2009
  • LEDs have rapidly replaced old light devices such as incandescent or fluorescent lamps, and have been widely applied in general lighting, signals, automobile, signs and others. Since LEDs are for both indoor and outdoor use, temperature and humidity inevitably affect its reliability. We explain the result of the degradation life test on LEDs, and guide to reliability analysis procedure. Analysis on reliability measures are performed by Weibull++6 program, and a common shape parameter of Weibull distribution on the LED is suggested. Also, we make a description of reliability analysis procedures for the degradation data using collected test data from degradation tests. Reliability analysis procedures are consisted of estimating degradation models and failure time, verifying of distribution and parameters of the distribution, and estimating of reliability measures. Finally, this paper suggests reliability analysis method for light characteristics on LEDs.

  • PDF

Failure Probability Models of Concrete Subjected to Split Tension Repeated- Loads (쪼갬인장 반복하중을 받는 콘크리트의 파괴확률 모델)

  • 김동호;김경진;이봉학;윤경구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.311-314
    • /
    • 2003
  • Concrete structures such as bridge, pavement, airfield, and offshore structure are normally subjected to repeated load. This paper proposes a failure probability models of concrete subjected to split tension repeated-loads, based on experimental results. The fatigue tests were performed at the stress ratio of 0.1, the loading shape of sine, the frequency of 20Hz, and the stress levels of 90, 80 and 70%. The fatigue test specimen was 150mm in diameter and 75mm in thickness. The fatigue analysis did not include which exceeded 0.9 of statistical coefficient of determination values or did not failure at 2$\times$$10^6$ cycles. The graphical method, the moment method, and maximum likelihood estimation method were used to obtain Weibull distribution parameters. The goodness-of-fit test by Kolmogorov-Smirnov test was acceptable 5% level of significance. As a result, the proposed failure probability model based on the two-parameter($\alpha and \mu$) Weibull distribution was good enough to estimate accurately the fatigue life subjected to tension mode.

  • PDF

High Temperature Design Criteria of Cordierite Ceramic Substrate in Four-point Banding (4점 굽힘시험에서 코디어라이트 세라믹 담체의 고온설계기준)

  • Baek, Seok-Heum;Park, Jea-Sung;Choi, Hyun-Jin;Cho, Seok-Swoo;Joo, Won-Sik
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.173-174
    • /
    • 2008
  • The four-point bending test is a widely used method to determine material parameters. The aim of the present study was to evaluate the flexural strength (or modulus of rupture) and the Weibull modulus of cordierite ceramic substrate by means of four-point bending tests. The strength data from experiments followed Weibull statistics. These data indicate that the fatigue effects are more severe when the substrate temperature in the peripheral region is near $200^{\circ}$. At temperatures well above $200^{\circ}C$ the available design strength can be as high as 65% as substrate's initial strength.

  • PDF

Estimation of Depth Effect on the Bending Strength of Domestic Japanese Larch Structural Lumber using Weibull Weakest Link Theory

  • Oh, Sei Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.2
    • /
    • pp.112-118
    • /
    • 2014
  • The depth effect on bending strength of Japanese larch structural lumber was investigated by using the published data of two different depth lumbers with the same length. Depth effect parameters were derived from Weibull's weakest link theory and compared to the results from other researches. Depth effect on bending strength was significant for No.1 and No.3 lumber, but not insignificant for No.2 lumber. Calculated value of the depth effect adjustment factors was 0.21, 0.11 and 0.22 by lumber grade, respectively. These results were similar to those results from previous researches and supported depth effect on bending strength of lumber. An apparent depth adjustment factor has been proposed to 0.2 in the literatures. Based on this study, depth adjustment factor was considered to 0.2 as a conservative optimum design value that should be incorporated in domestic building code (KBC) for structural lumber.

Planning Practical Multiple-Stress Accelerated Life Tests (실용적 복합 가속수명시험 계획의 개발)

  • Bae, Bong-Soo;Seo, Sun-Keun
    • Journal of Applied Reliability
    • /
    • v.17 no.2
    • /
    • pp.112-121
    • /
    • 2017
  • Purpose: The most previous works on designing accelerated life tests (ALTs) are focused on the application of a single stress. Because of the difficulty to obtain the sufficient information in a reasonable duration using single stress only, there is needed in practice to use multiple-stress ALTs frequently. This paper presents new practical plans with two stresses for Weibull distribution. Methods: The four-level practical plans based on rectangle test region are proposed and compared with the corresponding three-level statistically optimal plans. Sensitivity analyses for assumed design parameters and life-stress relationship are conducted. Results: A procedure to choose practical ALT plans is illustrated with a numerical example and guidelines for planning two-stress ALTs are provided. Conclusion: The proposed two-stress ALT plans on practical constraints to assess a quantile of Weibull lifetime distribution at the use condition are efficient and robust.

A Piecewise Weibull Distribution in Reliability and its Estimation (신뢰성이론에서의 피스와이즈 와이블분포와 그 추정)

  • Jeong, Hai-Sung
    • Journal of Korean Society for Quality Management
    • /
    • v.24 no.2
    • /
    • pp.65-76
    • /
    • 1996
  • In general, most industrial products exhibit bath-tub shaped curve for their failure rate functions. This distributional life model can be obtained by the Piecewise Weibull distribution. The least squares, maximum likelihood, and mixed methods of estimating the parameters of the Piecewise Weibull distribution are compared. The comparison is made by using the empirical mean squared errors of (a) the parameter estimates and (b) the estimated change-points, to summarize the results of 1000 simulated samples of three sizes - each 100, 150 and 200. The results are that the mixed method estimation comes to be the best as the sample sizes increase.

  • PDF

Comparison of Parameter Estimation for Weibull Distribution

  • Wang, Fu-Kwun;J. Bert Keats;B. Y. Leu
    • International Journal of Reliability and Applications
    • /
    • v.4 no.1
    • /
    • pp.41-50
    • /
    • 2003
  • This paper represents the first comprehensive comparison of the Newton-Raphson's method and Simple Iterative Procedure (SIP) in the maximum likelihood estimation of the two-parameter Weibull distribution. Computer simulation is employed to compare these two methods for multiply censored, singly censored data (Type I or Type Ⅱ censoring) and complete data. Results indicate the Newton-Raphson's with the Menon's estimated value, as an initial point remains the effective iterative procedure for estimating the parameters.

  • PDF

Weibull Statistical Analysis on the Mechanical Properties of SiC by Immersion in Acidic and Alkaline Solutions (산 및 알칼리 용액에 부식된 SiC의 기계적 특성에 대한 와이블 통계 해석)

  • Ahn, Seok-Hwan;Jeong, Sang-Cheol;Nam, Ki-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.9
    • /
    • pp.767-773
    • /
    • 2016
  • A Weibull statistical analysis of the mechanical properties of SiC ceramics was carried out by immersion in acidic and alkaline solutions. The heat treatment was carried out at 1373 K. The corrosion of SiC was carried out in acidic and alkaline solutions under KSL1607. The bending strength of corroded crack-healed specimens decreased 47% and 70% compared to those of uncorroded specimens in acidic and alkaline solutions, respectively. The corrosion of SiC ceramics is faster in alkaline solution than in acid solution. The scale and shape parameters were evaluated for the as-received and corroded materials, respectively. The shape parameter of the as-received material corroded in acidic and alkaline solutions was significantly more apparent in the acidic solution. Further, the heat-treated material was large in acidic solution but small in alkaline solution. The shape parameters of the as-received and heat-treated materials were smaller in both acidic and alkaline solutions.

Selecting the Best Soil Particle-Size Distribution Model for Korean Soils

  • Hwang, Sang-Il
    • Journal of Environmental Policy
    • /
    • v.2 no.1
    • /
    • pp.77-86
    • /
    • 2003
  • Particle-size distributions (PSDs) are widely used for the estimation of soil hydraulic properties. The objective of this study was to select the best model among the nine PSD models with different underlying assumptions, by using a variety of Korean soils. The Fredlund model with four parameters, the logistic growth curve, and Weibull distribution model showed the highest performance compared to the other models with the majority of soils studied. It was interesting to find that the logistic growth function with no fitting parameters showed a great fitting performance.

  • PDF

Equipment Failure Forecasting Based on Past Failure Performance and Development of Replacement Strategies

  • Begovic, Miroslav;Perkel, Joshua;Hartlein, Rick
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.5
    • /
    • pp.217-223
    • /
    • 2006
  • When only partial information is available about equipment failures (installation date and amount, as well as failure and replacement rates), data on sufficiently large number of yearly populations of the components can be combined, and estimation of model parameters may be possible. The parametric models may then be used for forecasting of the system's short term future failure and for formulation of replacement strategies. We employ the Weibull distribution and show how we estimate its parameters from past failure data. Using Monte Carlo simulations, it is possible to assess confidence ranges of the forecasted component performance data.