• 제목/요약/키워드: Web Search Personalization

검색결과 23건 처리시간 0.027초

Optimized Multi Agent Personalized Search Engine

  • DishaVerma;Barjesh Kochar;Y. S. Shishodia
    • International Journal of Computer Science & Network Security
    • /
    • 제24권9호
    • /
    • pp.150-156
    • /
    • 2024
  • With the advent of personalized search engines, a myriad of approaches came into practice. With social media emergence the personalization was extended to different level. The main reason for this preference of personalized engine over traditional search was need of accurate and precise results. Due to paucity of time and patience users didn't want to surf several pages to find the result that suits them most. Personalized search engines could solve this problem effectively by understanding user through profiles and histories and thus diminishing uncertainty and ambiguity. But since several layers of personalization were added to basic search, the response time and resource requirement (for profile storage) increased manifold. So it's time to focus on optimizing the layered architectures of personalization. The paper presents a layout of the multi agent based personalized search engine that works on histories and profiles. Further to store the huge amount of data, distributed database is used at its core, so high availability, scaling, and geographic distribution are built in and easy to use. Initially results are retrieved using traditional search engine, after applying layer of personalization the results are provided to user. MongoDB is used to store profiles in flexible form thus improving the performance of the engine. Further Weighted Sum model is used to rank the pages in personalization layer.

문서 특성에 대한 선호도 기반 웹 검색 개인화 (Web Search Personalization based on Preferences for Page Features)

  • 이수정
    • 정보교육학회논문지
    • /
    • 제15권2호
    • /
    • pp.219-226
    • /
    • 2011
  • 웹 상에서 사용자가 원하는 정보를 효율적으로 검색하는데 도움을 주기 위하여 웹 개인화는 사용자에게 흥미있는 웹 문서들을 추출해내는데 초점을 두고 있다. 이를 실현하기 위한 주요 방법들 중 하나는 문서에 포함된 질의어, 링크 및 사용자의 선호어를 이용하는 것이다. 본 연구에서는 이들 요소 외에 사용자들이 웹문서를 선택할 때 중요하게 생각하는 문서 특성들을 설문을 통하여 조사하였다. 설문 결과 문서의 내용이 가장 중요한 특성이었으나, 일부 사용자들에게는 문서에 포함된 이미지와 가독성도 내용과 마찬가지로 중요하게 간주되었다. 이를 바탕으로 각 사용자를 위한 문서의 주요 특성들의 상대적 가중치를 프로필에 유지 관리하고, 검색 결과의 개인화에 반영하는 방안을 제시한다. 제안한 개인화 방법의 성능을 분석한 결과, 일반 검색 엔진에 비해 최대 약 2.3배의 성능 향상을 보였고, 사용자 질의어와 선호어를 모두 이용하여 검색 결과를 산출하는 방법보다 약 1.5배의 성능 향상을 나타내어 그 우수성을 입증하였다.

  • PDF

개인화된 웹 검색을 위한 선호 기준 분석 (Analysis of Preference Criteria for Personalized Web Search)

  • 이수정
    • 컴퓨터교육학회논문지
    • /
    • 제13권1호
    • /
    • pp.45-52
    • /
    • 2010
  • 웹 문서 수의 급증으로 인해 인터넷을 검색할 때마다 발생하는 정보의 과부하 문제가 심각하게 부각되었다. 웹 검색 결과를 개선하기 위하여 개발된 기존의 알고리즘들은 주로 사용자의 질의어 및 선호어와 문서의 링크수를 이용하였다. 본 연구에서는 실험을 통하여 이 두가지 요소들을 이용한 검색 결과의 성능을 알아보고 이들 요소들 외에 선호하는 웹문서의 선택 기준을 조사 분석하였다. 실험 결과 질의어 및 선호어를 이용한 개인화된 검색 결과는 현 검색 엔진에 비해 최대 약 1.7배의 성능 향상을 가져 왔으며, 링크수를 이용한 검색 결과는 최대 약 1.3배의 향상을 보였다. 사용자가 웹문서를 선호하는 기준은 문서 내용이 최우선이었으나, 가독성과 문서가 포함한 이미지도 큰 비중을 차지하였다. 따라서 질의어 및 선호어 개수 이외에 각 사용자의 성향에 부합하는 객관적 데이터를 추가적으로 활용한다면 웹 검색 개인화 알고리즘의 성능이 크게 향상될 수 있을 것이다.

  • PDF

사용자의 이해수준에 따른 효율적인 웹문서 검색 (Efficient Web Document Search based on Users' Understanding Levels)

  • 심상희;이수정
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제15권1호
    • /
    • pp.38-46
    • /
    • 2009
  • 웹 문서 수가 급격히 증가함에 따라 인터넷을 검색할 때마다 발생하는 정보의 과부하 문제가 심각하게 부각되었다. 이러한 문제를 경감시키기 위해 사용자의 선호도에 부합하는 웹 환경을 조성하여 주는 등의 개인화 작업이 주목을 받고 있으나, 대부분의 검색 엔진은 사용자 질의어에만 초점을 두어 응답결과를 산출하고 있다. 이에 본 논문에서는 사용자의 이해수준에 따른 개인화된 검색 결과를 추출하는 방식에 대해 연구한다. 기존 연구와 차별화된 특징은 사용자 이해 수준을 고려하여 그에 맞는 난이도의 문서들이 우선적으로 검색되게 하는 것이다. 문서에 접근한 사용자들의 이해수준을 바탕으로 문서난이도를 변경시켜 주고, 사용자의 이해수준은 사용자가 접근한 문서 난이도를 바탕으로 주기적으로 변경시켜, 문서 난이도와 사용자 이해수준이 상호 연계되며 변경되도록 하였다. 본 논문의 결과를 적용한 웹 검색 시스템은 다양한 연령충의 웹 사용자들에게 매우 유익한 결과를 가져다 줄 것이다.

웹 로그와 구매 DB를 이용한 개인화 시스템에 관한 연구 (A Study on Personalization System Using Web Log and Purchasing Database)

  • 김영태;이성주
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 추계 학술대회 학술발표 논문집
    • /
    • pp.23-26
    • /
    • 2003
  • In this paper, a methodolgy for customizing web pages for indivisual users is suggested. It shows an efficient way to personalize web pages by predicting one's site access pattern. In addition, the prediction can reflect one's tendency after actual purchase. By using the APRIORI algorithm, one of the association rule search methods, the associativity among the purchase items can be inferred. This inferrence is based on the log data in a web server and database about purchase. Finally, a web page which contains the relationship, relative links on other web pages, and inferred items can be generated after this process.

  • PDF

개인화된 웹 검색 순위 생성 (Customized Web Search Rank Provision)

  • 강영기;배준수
    • 대한산업공학회지
    • /
    • 제39권2호
    • /
    • pp.119-128
    • /
    • 2013
  • Most internet users utilize internet portal search engines, such as Naver, Daum and Google nowadays. But since the results of internet portal search engines are based on universal criteria (e.g. search frequency by region or country), they do not consider personal interests. Namely, current search engines do not provide exact search results for homonym or polysemy because they try to serve universal users. In order to solve this problem, this research determines keyword importance and weight value for each individual search characteristics by collecting and analyzing customized keyword at external database. The customized keyword weight values are integrated with search engine results (e.g. PageRank), and the search ranks are rearranged. Using 50 web pages of Goolge search results for experiment and 6 web pages for customized keyword collection, the new customized search results are proved to be 90% match. Our personalization approach is not the way that users enter preference directly, but the way that system automatically collects and analyzes personal information and then reflects them for customized search results.

키워드 분석을 이용한 개인화 모바일 웹 뉴스 컨텐츠 생성에 관한 연구 (A Study on Personalized Mobile Web News Contents Creation using Keyword Analysis)

  • 한승현;임영환
    • 한국컴퓨터정보학회논문지
    • /
    • 제12권3호
    • /
    • pp.277-285
    • /
    • 2007
  • 본 연구에서는 웹 뉴스 채널 컨텐츠의 키워드 분석을 이용한 개인화된 모바일 웹 컨텐츠 생성 방법에 대해 제안한다. 기존의 웹 사이트의 뉴스기사 검색에서 제공하는 RSS와 연계된 웹 컨텐츠에서 빠르게 데이터를 획득하고, 키워드 분석을 통한 개인화 기법을 적용하여 컨텐츠를 필터링한다. 제안한 방법을 사용함으로써 수많은 뉴스 채널에서 보다 빠르고 쉽게 모바일용 웹 컨텐츠를 생성할 수 있어 컨텐츠 제작비용을 줄일 수 있다. 또한 키워드 분석을 이용하여 무선 인터넷 사용자들의 보다 세밀한 관심영역에 대응할 수 있으며 컨텐츠 필터링과 컨텐츠 접근에 대한 만족도를 향상시킬 수 있다.

  • PDF

폭소노미 기반 개인화 웹 검색 시스템 (Folksonomy-based Personalized Web Search System)

  • 김동욱;강수용;김한준;이병정
    • 디지털콘텐츠학회 논문지
    • /
    • 제11권1호
    • /
    • pp.105-115
    • /
    • 2010
  • 검색엔진들은 사용자로부터 질의어를 전송받아 질의어와 관련이 가장 높은 웹 문서들을 보여주게 된다. 하지만 검색엔진이 사용자의 질의어만 가지고 사용자의 의도를 파악하여 정확한 웹 문서를 제공하기는 어렵다. 따라서 검식 엔진 시스템은 다양한 개인화 방법을 사용하여 각 사용자가 원하는 검색 결과를 보여주기 위해 노력한다. 본 논문에서는 개인화 검색을 위해 '폭소노미'를 기반으로 사용자에게 적합한 질의어를 추천해 주는 방법을 제안한다. 또한 이러한 개인화된 검색 결과를 제공하는 시스템이 가질 수 있는 프라이버시 침해 위험성을 제거하면서도 검색 서비스 제공자 입장에서는 사용자 정보를 활용한 다양한 서비스(개인화 광고등) 제공이 가능하도록 하는 개인화 검색 서비스 구조를 제안한다.

RIA 기반 개인화 검색을 위한 Widget 응용의 구현 (RIA based Personalized Search with Widget Implementation)

  • 박차라;임태수;이우기
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제13권6호
    • /
    • pp.402-406
    • /
    • 2007
  • 쉽고 유연한 조작과 역동적인 화면구성에 초점을 맞춘 인터넷서비스 맞춤기술인 RIA(Rich Internet Application) 기술들은 웹2.0기술 중 사용자 편의성을 강조한 차세대 UI기술로 기대되고 있다. 본 논문은 평면적이고 순차적인 방법의 고급검색을 동적UI로 구현하고 사용자가 개인화 검색정보를 저장해서 검색에 활용할 수 있도록 구현하였다. 또한 사용자중심의 선호도를 통해 기존 웹 검색보다 개인화된 검색 결과물을 발견할 수 있는 검색구조를 설계하였다. 본 연구는 RIA 기술을 활용한 개인화 검색 관리자의 적용을 통해 검색된 페이지양의 감소를 입증하여 사용자에게 더욱 정제된 데이터를 제공하며 결론적으로 사용자들이 더욱 유연하고 편리한 방법으로 개인화된 웹 검색을 이용할 수 있음을 보였다.

웹 검색 개인화를 위한 개념네트워크 프로파일 기반 순위 재조정 기법 (New Re-ranking Technique based on Concept-Network Profiles for Personalized Web Search)

  • 김한준;노준호;장재영
    • 한국인터넷방송통신학회논문지
    • /
    • 제12권2호
    • /
    • pp.69-76
    • /
    • 2012
  • 본 논문은 웹 검색 개인화를 실현하기 위해 개념네트워크 구조의 사용자 프로파일에 기반한 새로운 형태의 순위 재조정 기법을 제안한다. 기본적으로 개인화 검색은 개인 사용자의 검색 성향을 담고 있는 사용자 프로파일을 기반으로 이루어지며, 이를 활용하여 초기에 주어진 검색 질의어를 확장하거나 검색결과의 순위를 재조정하게 된다. 제안 기법은 순위 재조정 기법을 주축으로 질의어 확장 기법을 융합한 형태를 취한다. 기본 아이디어는 사용자 프로 파일에 의해 추천된 확장 질의어로부터 도출된 문서집합들에 공통적으로 출현하는 문서들의 중첩도를 평가하여, 그 결과값을 순위 재조정에 활용하는 것이다. 성향이 다른 다수의 실험자들이 검색 질의어 유형을 구분하여 실험을 수행함으로써 제안기법이 기존 기법에 비해 우수함을 보인다.