Efficient Web Document Search based on Users' Understanding Levels

사용자의 이해수준에 따른 효율적인 웹문서 검색

  • 심상희 (경인교육대학원 컴퓨터교육학과) ;
  • 이수정 (경인교육대학원 컴퓨터교육학과)
  • Published : 2009.01.15

Abstract

With the rapid increase in the number of Web documents, the problem of information overload is growing more serious in Internet search. In order to ease the problem, researchers are paying attention to personalization, which creates Web environment fittingly for users' preference, but most of search engines produce results focused on users' queries. Thus, the present study examined the method of producing search results personalized based on a user's understanding level. A characteristic that differentiates this study from previous researches is that it considers users' understanding level and searches documents of difficulty fit for the level first. The difficulty level of a document is adjusted based on the understanding level of users who access the document, and a user's understanding level is updated periodically based on the difficulty of documents accessed by the user. A Web search system based on the results of this study is expected to bring very useful results to Web users of various age groups.

웹 문서 수가 급격히 증가함에 따라 인터넷을 검색할 때마다 발생하는 정보의 과부하 문제가 심각하게 부각되었다. 이러한 문제를 경감시키기 위해 사용자의 선호도에 부합하는 웹 환경을 조성하여 주는 등의 개인화 작업이 주목을 받고 있으나, 대부분의 검색 엔진은 사용자 질의어에만 초점을 두어 응답결과를 산출하고 있다. 이에 본 논문에서는 사용자의 이해수준에 따른 개인화된 검색 결과를 추출하는 방식에 대해 연구한다. 기존 연구와 차별화된 특징은 사용자 이해 수준을 고려하여 그에 맞는 난이도의 문서들이 우선적으로 검색되게 하는 것이다. 문서에 접근한 사용자들의 이해수준을 바탕으로 문서난이도를 변경시켜 주고, 사용자의 이해수준은 사용자가 접근한 문서 난이도를 바탕으로 주기적으로 변경시켜, 문서 난이도와 사용자 이해수준이 상호 연계되며 변경되도록 하였다. 본 논문의 결과를 적용한 웹 검색 시스템은 다양한 연령충의 웹 사용자들에게 매우 유익한 결과를 가져다 줄 것이다.

Keywords

References

  1. D. Arotaritei and S. Mitra, “Web mining: a survey in the fuzzy framework,” Fuzzy Sets and Systems, Vol.148, 2004. pp. 5-19 https://doi.org/10.1016/j.fss.2004.03.003
  2. C. Shahabi and Y.-S. Chen, “Web Information Personalization: Challenges and Approaches,” 3rd International Workshop on Databases in Networ-ked Information Systems(DNIS). Aizu-Wakamatsu, Japan. pp. 5-15, 2003
  3. I. Cadez, D. Heckerman, C. Meek, P. Smyth, and S. White, "Visualization of navigation patterns on web site using model based clustering," Technical Report MSR-TR-00-18, Microsoft Research, Micro-soft Corporation, Redmond, WA, 2000
  4. C.J. van Rijsbergen. Information Retrieval. Butterworths, 1979
  5. B. Mobasher, R. Cooley, and J. Srivastava, “Crea-ting adaptive web sites through usage-based clustering of URLs.” Proc. IEEE Knowledge and Data Engineering Exchange Workshop, pp. 19-25, 1999 https://doi.org/10.1109/KDEX.1999.836525
  6. A. Stefani and C. Strapparava, “Exploiting nlp techniques to build user model for web sites: The use of woridnet in SiteIF project,” Proc. 2nd Workshop on Adaptive Systems and User Mode-ling on the WWW, 1999
  7. H.-R. Kim and P. K. Chan, "Personalized Search Results with User Interest Hierarchies Learnt from Bookmarks," 7th International Workshop on Knowledge Discovery on the Web, WebKDD 2005
  8. N. Good, J. Schafer, J. Konstan, J. Borchers, B, Sarwar, J. Herlocker, and J. Riedl, “Combining Collaborative Filtering with Personal Agents for Better Recommendations,” Conference of the American Association of Artificial Intelligence. pp. 439-446, 1999
  9. L. Chen and K. Sycara, “WebMate: A Personal Agent for Browsing and Searching,” 2nd Inter-national Conference on Autonomous Agent(Agents '98). Minneapolis, USA: ACM Press. pp. 132-139, 1998 https://doi.org/10.1145/280765.280789
  10. F. Tanudjaja and L. Mui, 'Persona; A Contextua-lized and Personalized Web Search,' The 35th Annual Hawaii international Conference on Sys-tem Sciences(HICSS'02). Big Island, Hawaii, 2002
  11. F. Liu, C. Yu, and W. Meng, "Personalized web search for improving retrieval effectiveness," IEEE Trans. Knowl. Data Eng., Vol.16, No.1, pp. 28-40, 2004 https://doi.org/10.1109/TKDE.2004.1264820
  12. M. Balabanovic and Y. Shoham, "Fab: content-based, collaborative recommendation," Communications of the ACM, Vol.40, No.3, pp. 66-72, arch. 1997 https://doi.org/10.1145/245108.245124
  13. C. Basu, H. Hirsh, and W.W. Cohen, “Using Social and Content-Based Information in Recom-mendation,” Proceedings of the AAAI-98, 1998
  14. K.-J. Kim and S.-B. Cho, "Personalized mining of web documents using link structures and fuzzy concept networks," Applied Soft Computing 7, pp. 398-410, 2007 https://doi.org/10.1016/j.asoc.2005.09.002
  15. G. Meghabghab, “Mining user’s web searching skills through fuzzy cognitive state map,” Proc. Joint 9th IFSA World Congress and 20th NAFIPS Internat. Conf., pp. 429-434, 2001 https://doi.org/10.1109/NAFIPS.2001.944291
  16. K. Jung, “Modeling web user interest with implicit indicators,” Master Thesis, Florida Institute of Technology, 2001
  17. L.A. Granka, T. Joachims, and G. Gay, “Eye-tracking analysis of user behavior in WWW search,” In Proc. 27th annual international conference on Research and development in inforniatiori retrieval, 2004 https://doi.org/10.1145/1008992.1009079
  18. H. Kim and P.K. Chan, "Implicit indicator for interesting web pages," International Conference on Web Information Systems and Technologies, pp. 270-277, 2005
  19. 유동선,이교원, 기초 퍼지 이론, 교유사, 서울, 2001