• Title/Summary/Keyword: Weakly nonlinear

Search Result 83, Processing Time 0.026 seconds

FAMILIES OF NONLINEAR TRANSFORMATIONS FOR ACCURATE EVALUATION OF WEAKLY SINGULAR INTEGRALS

  • BEONG IN YUN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.27 no.3
    • /
    • pp.194-206
    • /
    • 2023
  • We present families of nonlinear transformations useful for numerical evaluation of weakly singular integrals. First, for end-point singular integrals, we define a prototype function with some appropriate features and then suggest a family of transformations. In addition, for interior-point singular integrals, we develop a family of nonlinear transformations based on the aforementioned prototype function. We take some examples to explore the efficiency of the proposed nonlinear transformations in using the Gauss-Legendre quadrature rule. From the numerical results, we can find the superiority of the proposed transformations compared to some existing transformations, especially for the integrals with high singularity strength.

Shoaling Characteristics of Boussinesq Models with Varying Nonlinearity (비선형 차수에 따른 Boussinesq 모형의 천수변형 특성)

  • Park, Seung-Min;Yoon, Jong-Tae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.1
    • /
    • pp.121-127
    • /
    • 2008
  • Numerical experiments with weakly nonlinear MIKE21 BW module and fully nonlinear FUNWAVE model are performed to identify the nonlinear characteristics of Boussinesq models with varying nonlinearity. Generation of waves with varying amplitudes, nonlinear shoaling and wave propagation over submerged bar experiments showed the importance of nonlinear model in shallow water where nonlinearity becomes prominent. Fully nonlinear model showed the nonsymmetrical wave form more clearly and gave larger shoaling coefficients than those of weakly nonlinear model.

GLOBAL ATTRACTOR OF THE WEAKLY DAMPED WAVE EQUATION WITH NONLINEAR BOUNDARY CONDITIONS

  • Zhu, Chaosheng
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.1
    • /
    • pp.97-106
    • /
    • 2012
  • In this paper, the main purpose is to study existence of the global attractors for the weakly damped wave equation with nonlinear boundary conditions. To this end, we first show that the existence o a bounded absorbing set by the perturbed energy method. Secondly, we utilize the decomposition of the solution operator to verify the asymptotic compactness.

COMMON FIXED POINT THEOREMS FOR GENERALIZED 𝜓∫𝜑-WEAKLY CONTRACTIVE MAPPINGS IN G-METRIC SPACES

  • Kim, Jong Kyu;Kumar, Manoj;Bhardwaj, Preeti;Imdad, Mohammad
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.3
    • /
    • pp.565-580
    • /
    • 2021
  • In this paper, first of all we prove a fixed point theorem for 𝜓∫𝜑-weakly contractive mapping. Next, we prove some common fixed point theorems for a pair of weakly compatible self maps along with E.A. property and (CLR) property. An example is also given to support our results.

THE TRAPEZOIDAL RULE WITH A NONLINEAR COORDINATE TRANSFORMATION FOR WEAKLY SINGULAR INTEGRALS

  • Yun, Beong-In
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.6
    • /
    • pp.957-976
    • /
    • 2004
  • It is well known that the application of the nonlinear coordinate transformations is useful for efficient numerical evaluation of weakly singular integrals. In this paper, we consider the trapezoidal rule combined with a nonlinear transformation $\Omega$$_{m}$(b;$\chi$), containing a parameter b, proposed first by Yun [14]. It is shown that the trapezoidal rule with the transformation $\Omega$$_{m}$(b;$\chi$), like the case of the Gauss-Legendre quadrature rule, can improve the asymptotic truncation error by using a moderately large b. By several examples, we compare the numerical results of the present method with those of some existing methods. This shows the superiority of the transformation $\Omega$$_{m}$(b;$\chi$).TEX>).

Numerical Analysis of Added Resistances of a Large Container Ship in WavesNumerical Analysis of Added Resistances of a Large Container Ship in Waves

  • Lee, Jae-Hoon;Kim, Beom-Soo;Kim, Yonghwan
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.2
    • /
    • pp.83-101
    • /
    • 2017
  • In this study, the added resistances of the large container ship in head and oblique seas are evaluated using a time-domain Rankine panel method. The mean forces and moments are computed by the near-field method, namely, the integration of the second-order pressure directly on the ship surface. Furthermore, a weakly nonlinear approach in which the nonlinear restoring and Froude-Krylov forces on the exact wetted surface of a ship are included in order to examine the effects of amplitudes of waves on ship motions and added resistances. The computation results for various advance speeds and heading angles are validated by comparing with the experimental data, and the validation shows reasonable consistency. Nevertheless, there exist discrepancies between the numerical and experimental results, especially for a shorter wave length, a higher advance speed, and stern quartering seas. Therefore, the accuracies of the linear and weakly nonlinear methods in the evaluation of the mean drift forces and moments are also discussed considering the characteristics of the hull such as the small incline angle of the non-wall-sided stern and the fine geometry around the high-nose bulbous bow.

COMMON FIXED POINT THEOREMS FOR TWO SELF MAPS SATISFYING ξ-WEAKLY EXPANSIVE MAPPINGS IN DISLOCATED METRIC SPACE

  • Kim, Jong Kyu;Kumar, Manoj;Preeti, Preeti;Poonam, Poonam;Lim, Won Hee
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.2
    • /
    • pp.271-287
    • /
    • 2022
  • In this article, we shall prove a common fixed point theorem for two weakly compatible self-maps 𝒫 and 𝔔 on a dislocated metric space (M, d*) satisfying the following ξ-weakly expansive condition: d*(𝒫c, 𝒫d) ≥ d* (𝔔c, 𝔔d) + ξ(∧(𝔔c, 𝔔d)), ∀ c, d ∈ M, where $${\wedge}(Qc,\;Qd)=max\{d^*(Qc,\;Qd),\;d^*(Qc,\;\mathcal{P}c),\;d^*(Qd,\;\mathcal{P}d),\;\frac{d^*(Qc,\;\mathcal{P}c){\cdot}d^*(Qd,\;\mathcal{P}d)}{1+d^*(Qc,\;Qd)},\;\frac{d^*(Qc,\;\mathcal{P}c){\cdot}d^*(Qd,\;\mathcal{P}d)}{1+d^*(\mathcal{P}c,\;\mathcal{P}d)}\}$$. Also, we have proved common fixed point theorems for the above mentioned weakly compatible self-maps along with E.A. property and (CLR) property. An illustrative example is also provided to support our results.

ON SOME NEW NONLINEAR DELAY AND WEAKLY SINGULAR INTEGRAL INEQUALITIES

  • Ma, Qing-Hua;Debnath, L.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.5_6
    • /
    • pp.877-888
    • /
    • 2008
  • This paper deals with some new nonlinear delay and weakly singular integral inequalities of Gronwall-Bellman type. These results generalize the inequalities discussed by Xiang and Kuang [19]. Several other inequalities proved by $Medve{\check{d}}$ [15] and Ou-Iang [17] follow as special cases of this paper. This work can be used in the analysis of various problems in the theory of certain classes of differential equations, integral equations and evolution equations. A modification of the Ou-Iang type inequality with delay is also treated in this paper.

  • PDF

SOME COMMON FIXED POINT THEOREMS FOR GENERALIZED f-WEAKLY CONTRACTIVE MAPPINGS

  • Chandok, Sumit
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.257-265
    • /
    • 2011
  • In this paper, we first prove a common fixed point theorem for generalized nonlinear contraction mappings in complete metric spaces there by generalizing and extending some known results. Then we present this result in the context of ordered metric spaces by using monotone non-decreasing mapping.