Acknowledgement
This work was supported by the Basic Science Research Program through the National Research Foundation(NRF) Grant funded by Ministry of Education of the republic of Korea (2018R1D1A1B07045427).
References
- M. Aamri and D. El. Moutawakil, Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl., 270 (2002), 181-188. https://doi.org/10.1016/S0022-247X(02)00059-8
- M. Asadi and P. Salimi, Some fixed point and common fixed point theorems on G-metric spaces, Nonlinear Funct. Anal. Appl., 21(3) (2016), 5213-530.
- A. Branciari, A Fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci., 29(9) (2002), 531-536. https://doi.org/10.1155/S0161171202007524
- B.C. Dhage, Generalized metric spaces and mappings with fixed point, Bull. Calcutta Math. , Soc., 84 (1982), 329-336.
- B.C. Dhage, Generalized metric spaces and topological structures, Anal. St. Univ. Al. I. Cuza, Iasi Ser. Mat., 46(1) (2000), 3-24.
- G. Jungck, Common fixed points for non-continuous non-self mappings on non-metric spaces, Far East J. Math. Sci., 4 (1996), 199-212.
- Z. Mustafa and B. Sims, Some remarks concerning D-metric spaces, Proceedings of the International Conference on Fixed Point Theory and Applications, Valencia (Spain), 2003 (2003), 189-198.
- Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7(2) (2006), 289-297.
- Z. Mustafa, H. Obiedat and F. Awawdeh, Some fixed point theorems for mappings on complete G-metric spaces, Fixed Point Theory Appl., Article ID 189870, 2008 (2008), 10 pages.
- B. Nurwahyu, Some properties of common fixed point for two self-mappings on some contraction mappings in quasi αb-metric space, Nonlinear Funct. Anal. Appl., 25(1) (2020), 175-188
- W. Shatanawi, Fixed point theory for contractive mappings satisfying ϕ-maps in Gmetric spaces, Fixed Point Theory Appl., Article ID 181670, 2010 (2010), 9 pages.
- W. Sintunavarat and P. Kumam, Common fixed point theorem for a pair of weakly compatible mappings in fuzzy metric space, J. Appl. Math. , Article ID 637958, 2011 (2011), 14 pages.
- D. Singh, V. Chauhan and V. Joshi, Results on n-tupled coincidence and fixed points in partially ordered G-metric spaces via symmetric (φ, ψ)-contractions Nonlinear Funct. Anal. Appl., 20(3) (2015), 491-516.
- D. Singh, V. Joshi and J.K. Kim, Existence of solution to Bessel-type boundary value problem via G-cyclic F-contractive mapping with graphical veriication, Nonlinear Funct. Anal. Appl., 23(2) (2018), 205-224. https://doi.org/10.22771/NFAA.2018.23.02.01