• Title/Summary/Keyword: Wave-Induced Current

Search Result 175, Processing Time 0.029 seconds

Maximum Coupling Through a Narrow Slit in a Short-Ended Parallel-plate Waveguide with a Nearby Conducting Strip (단락종단된 평행평판 도파관의 좁은 슬릿을 통한 근접 도체스트립과의 최대 결합)

  • Lee, Jong-Ik;Jo, Yeong-Gi
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.12
    • /
    • pp.15-21
    • /
    • 2000
  • In this study, the electromagnetic coupling through a narrow slit in the upper wall of a short-ended parallel-plate waveguide(PPW) covered by a dielectric slab with a nearby conducting strip on the slab Is considered for the case that the TEM wave is incident in the PPW. Coupled integral equations whose unknowns are the slit electric field and the induced electric current over the strip are derived and solved numerically by use of the method of moments. From results, it has been observed that most of the incident power can be coupled exterior to the guide by appropriately setting the strip width and position, though the slit is very narrow. In addition, the differences between the radiation phenomena, observed in the cases that the conducting strip and the upper Plate of the PPW form a cavity and that strip behaves like a parasitic element, are discussed.

  • PDF

The State Estimation by Unknown Disturbance Observer of Underwater Vehicle System for Robust Control (강인한 제어를 위한 수중이동시스템의 상태추정에 대한 연구)

  • Lee, Jin-Woo;Kim, Hwan-Seong;An, Young-Joo
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.169-175
    • /
    • 2003
  • In this paper, and estimation method for estimating the states of underwater vehicle systems with external unknown disturbance is proposed. First, the dynamics of underwater vehicle are induced by Taylor series expansion in the vertical plane and horizontal plane, respectively. For constructing the system model, the external efforts, i.e., the sea surface disturbances, the current, wave and etc., are regarded as external unknown disturbances. Thus the disturbance is added as external input into state-space form of underwater vehicle system. To estimate the state of systems with unknown disturbance, a disturbance observer which does not effected the external unknown input is proposed, and the existence condition for the observer is given. Finally, the effectiveness of the proposed disturbance observer for robust control of underwater vehicle systems is verified by using numerical simulation.

Analysis of the TE Scattering by a Resistive Strip Grating Over a Grounded Dielectric Plane (접지된 유전체 평면위의 저항띠 격자구조에 의한 TE 산란 해석)

  • Yoon, Uei-Joong
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.3
    • /
    • pp.198-204
    • /
    • 2006
  • In this paper, TE(transverse electric) scattering problems by a resistive strip grating on a grounded dielectric plane according to the strip width and grating period, the relative permittivity and thickness of dielectric layer, and incident angles of a TE plane wave are analyzed by applying the FGMM(Fourier-Galerkin Moment Method) known as a numerical procedure. The induced surface current density is simply expanded in a Fourier series by using the exponential function as a simple function. The reflected power gets increased according as the relative permittivity and thickness of dielectric multilayers gets increased, the sharp variations of the reflected power are due to resonance effects were previously called wood's anomallies[7]. To verify the validity of the proposed method, the numerical results of normalized reflected power for the uniform resistivity R = 0 as a conductive strip case show in good agreement with those in the existing paper.

  • PDF

Super-resolution Microscopy with Adaptive Optics for Volumetric Imaging

  • Park, Sangjun;Min, Cheol Hong;Han, Seokyoung;Choi, Eunjin;Cho, Kyung-Ok;Jang, Hyun-Jong;Kim, Moonseok
    • Current Optics and Photonics
    • /
    • v.6 no.6
    • /
    • pp.550-564
    • /
    • 2022
  • Optical microscopy is a useful tool for study in the biological sciences. With an optical microscope, we can observe the micro world of life such as tissues, cells, and proteins. A fluorescent dye or a fluorescent protein provides an opportunity to mark a specific target in the crowd of biological samples, so that an image of a specific target can be observed by an optical microscope. The optical microscope, however, is constrained in resolution due to diffraction limit. Super-resolution microscopy made a breakthrough with this diffraction limit. Using a super-resolution microscope, many biomolecules are observed beyond the diffraction limit in cells. In the case of volumetric imaging, the super-resolution techniques are only applied to a limited area due to long imaging time, multiple scattering of photons, and sample-induced aberration in deep tissue. In this article, we review recent advances in super-resolution microscopy for volumetric imaging. The super-resolution techniques have been integrated with various modalities, such as a line-scan confocal microscope, a spinning disk confocal microscope, a light sheet microscope, and point spread function engineering. Super-resolution microscopy combined with adaptive optics by compensating for wave distortions is a promising method for deep tissue imaging and biomedical applications.

Characteristics of Velocity Fields around 3-Dimensional Permeable Submerged Breakwaters under the Conditions of Salient Formation (설상사주 형성조건 하에 있는 3차원투과성잠제 주변에서 내부유속변동의 특성)

  • Lee, Kwang-Ho;Bae, Ju-Hyun;An, Sung-Wook;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.399-409
    • /
    • 2017
  • This study numerically investigates the characteristics of the velocity field including the average flow velocity, longshore current and turbulent kinetic energy acting as the main external forces of the salient formed behind the permeable submerged breakwaters. Shoreline response is also predicted by the longshore-induced flux. In this paper, a three-dimensional numerical wave tank based on the OLAFOAM, CFD open source code, is utilized to simulate the velocity field around permeable submerged breakwaters under the formation condition of salient. The characteristics of the velocity field around permeable submerged breakwaters with respect to the gap width between breakwaters and the installing position away from the shoreline under a range of regular waves for different wave height are evaluated. The numerical results revealed that as the gap width between breakwaters increases, the longshore currents become stronger. Furthermore, as the gap width becomes narrower, the point where flow converges moves from the center of the breakwater to the head part. As a result, it is possible to understand the formation of the salient formed behind the submerged breakwaters. In addition, it was found that the longshore currents caused by the gap width between breakwaters and the installation position away from the shoreline are closely related to the turbulent kinetic energy.

Analysis of Radiation Characteristics on Offset Gregorian Antenna Using Jacobi-Bessel Series (Jacobi-Bessel 급수를 이용한 옵셋 그레고리안 안테나의 복사특성 해석)

  • Ryu, Hwang
    • The Journal of Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.5-14
    • /
    • 1997
  • The purpose of thesis is to analyze the radiation characteristics of an offset gregorian antenna in order to design the satellite-loaded antenna. In order to compute the radiation pattern of the sub-reflector, the reflected wave is obtained by GO(Geometric Optics) at an arbitrary shaped sub-reflector. Then the total radiation EM wave is obtained by summing the diffracted fields obtained by UTD(Uniform Geometrical Theory of Diffraction) and the GO fields. In order to calculate the far field radiation pattern of the main reflector, the radiation integral equation is derived from the induced current density on reflector surface using PO(Physical Optics). The kernel is expanded in terms of Jacobi-Bessel series for increasing the computational efficiency, then the modified radiation integral is represented as the double integral equation independent of observation points. When the incident fields are assumed to be x-or y-polarized field, the characteristics of radiation patterns in the gregorian antenna is analyzed in case of the main reflector having the focal length of 62.4$\lambda$, diameter of 100$\lambda$, and offset height of 75$\lambda$, and the sub-reflector having the eccentricity of 0.501, the inter focal length og 32.8$\lambda$, the horn axis angle of $9^{\circ}$ and the half aperture angle of $15.89^{\circ}$. The cross-polarized level and side lobe level in the offset geogorian reflector are reduced by 30dB and 10dB, respectively, in comparison with those of the offset parabolic antenna.

  • PDF

Effects of Lemakalim, a Potassium Channel Opener, on the Contractility and Electrical Activity of the Antral Circular Muscle in Guinea-Pig Stomach

  • Kim, Sung-Joon;Jun, Jae-Yeoul;Choi, Youn-Baik;Kim, Ki-Whan;Kim, Woo-Gyeum
    • The Korean Journal of Physiology
    • /
    • v.28 no.1
    • /
    • pp.37-50
    • /
    • 1994
  • Synthetic potassium channel openers (KCOs) are agents capable of opening K-channels in excitable cells. These agents are known to have their maximal potency in the smooth muscle tissue, especially in the vascular smooth muscle. Much attention has been focused on the type of K-channel that is responsible for mediating the effects of KCOs. As the KCO-induced changes are antagonized by glibenclamide, an $K_{ATP}$ (ATP-sensitive K-channel) blocker in the pancreatic ${\beta}-cell,\;K_{ATP}$ was suggested to be the channel responsible. However, there also are many results in favor of other types of K-channel $$(maxi-K,\;small\;conductance\;K_{Ca,}\; SK_{ATP}) mediating the effects of KCOs. Effects of lemakalim, (-)enantiomer of cromakalim (BRL 34915), on the spontaneous contractions and slow waves, were investigated in the antral circular muscle of the guinea-pig stomach. Membrane currents and the effects on membrane currents and single channel activities were also measured in single smooth muscle cells and excised membrane patches by using the patch clamp method. Lemakalim induced hyperpolarization and inhibited spontaneous contractions in a dose-dependent manner. These effects were blocked by glibenclamide and low concentrations of tetraethyl ammonium (< mM). Glibenclamide blocked the effect of lemakalim on the membrane potential and slow waves. The mechanoinhibitory effect of lemakalim was blocked by pretreatment with glibenclamide. In a whole ceIl patch clamp condition, lemakalim largely increased outward K currents. These outward K currents were blocked by TEA, glibenclamide and a high concentration of intracelIular EGTA (10 mM). Volatage-gated Ca currents were not affected by lemakalim. In inside-out patch clamp experiments, lemakalim increased the opening frequency of the large conductance $Ca^{2+}-activated$ K channels $(BK_{Ca},\;Maxi-K).$ From these results, it is suggested that lemakalim induces hyperpolarization by opening K-channels which are sensitive to internal Ca and such a hyperpolarization leads to the inhibition of the spontaneous contraction.

  • PDF

A Practical Algorithm to Simulate Erosion of On-Shore Zone (실용적 해안선 후퇴 반영 알고리즘)

  • Kim, Hyoseob;Lee, Jungsu;Jin, Jae-Youll;Jang, Changhwan
    • Journal of Wetlands Research
    • /
    • v.15 no.3
    • /
    • pp.423-430
    • /
    • 2013
  • An algorithm to allow shoreline movement during numerical experiment on sediment transport, deposition or resuspension for general coastal morphology is proposed here. The bed slope near shoreline, i.e. mean sea level, is influenced by bed material, tidal current, waves, and wave-induced current, but has been reported to remain within a stable range. Its annual variation is not large, either. The algorithm is adjusting the bathymetry, if the largest bed slope within shoreline band exceeds a given bed slope due to continuous erosion at zones below the shoreline. This algorithm automatically describes retreat of shoreline caused by erosion, when used within a numerical system. The algorithm was tested to a situation which includes a continuous dredging at a point, and showed satisfactory development of concentric circle contours. Next, the algorithm was tested to another situation which includes sinking of eroded part of bed plate, and produced satisfactory results, too. Finally, the algorithm was tested to a movable-bed laboratory experimental conditions. The shoreline movement behind detached breakwater was reasonably reproduced with this algorithm.

New Drug Delivery System Based on a Laser-Induced Shockwave (레이저 유도 충격파를 이용한 첨단 약물전달시스템 개발)

  • Han, Tae-Hee;Lee, Hyun-Hee;Gojani, Ardian B.;Yoh, Jai-Ick
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.1
    • /
    • pp.67-71
    • /
    • 2010
  • Impingement of a high power laser pulse (above 1 GW/$cm^2$) on a metal foil causes its ablation, which is characterized by a rapid expulsion of matter and the initiation of a strong shock wave inside the solid metal. The shock propagates through the foil and reverberates on the rear side, causing its deformation and microparticle ejection, which were deposited on the foil prior to ablation. Based on this principle, we are developing a new drug delivery system - Biolistic gun. Current study is focused on the controllability, stability, efficiency of the system, and characterization of the penetration shapes in various conditions. We have tested the system by applying direct and confined ablation. Several different media combinations were used for confinement-BK7 glass, water, BK7 glass with water, and succulent jelly(ultrasono jelly, RHAPAPHRM). Biological tissue was replicated by a 3% gelatin solution. Present data shows that the confinement results in enhancement of penetration shape reached by 5 um cobalt microparticles. Based on the analysis of the experimental results we observe that the penetration shape of microparticles can be controlled by adjusting the thickness of confinement media.

하이브리드 SEM 시스템

  • Kim, Yong-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.109-110
    • /
    • 2014
  • 주사전자현미경(Scanning Electron Microscopy: SEM)은 고체상태에서 미세조직과 형상을 관찰하는 데에 가장 다양하게 쓰이는 분석기기로서 최근에 판매되고 있는 고분해능 SEM은 수 나노미터의 분해능을 가지고 있다. 그리고 SEM의 초점심도가 크기 때문에 3차원적인 영상의 관찰이 용이해서 곡면 혹은 울퉁불퉁한 표면의 영상을 육안으로 관찰하는 것처럼 보여준다. 활용도도 매우 다양해서 금속파면, 광물과 화석, 반도체 소자와 회로망의 품질검사, 고분자 및 유기물, 생체시료 nnnnnnnnn와 유가공 제품 등 모든 산업영역에 걸쳐 있다(Fig. 1). 입사된 전자빔이 시료의 원자와 탄성, 비탄성 충돌을 할 때 2차 전자(secondary electron)외에 후방산란전자(back scattered electron), X선, 음극형광 등이 발생하게 되는 이것을 통하여 topography (시료의 표면 형상), morphology(시료의 구성입자의 형상), composition(시료의 구성원소), crystallography (시료의 원자배열상태)등의 정보를 얻을 수 있다. SEM은 2차 전자를 이용하여 시료의 표면형상을 측정하고 그 외에는 SEM을 플랫폼으로 하여 EDS (Energy Dispersive X-ray Spectroscopy), WDS (Wave Dispersive X-ray Spectroscope), EPMA (Electron Probe X-ray Micro Analyzer), FIB (Focus Ion Beam), EBIC (Electron Beam Induced Current), EBSD (Electron Backscatter Diffraction), PBMS (Particle Beam Mass Spectrometer) 등의 많은 분석장치들이 SEM에 부가적으로 장착되어 다양한 시료의 측정이 이루어진다. 이 중 결정구조, 조성분석을 쉽고 효과적으로 할 수 있게 하는 X선 분석장치인 EDS를 SEM에 일체화시킨 장비와 EDS 및 PBMS를 SEM에 장착하여 반도체 공정 중 발생하는 나노입자의 형상, 성분, 크기분포를 측정하는 PCDS(Particle Characteristic Diagnosis System)에 대해 소개하고자 한다. - EDS와 통합된 SEM 시스템 기본적으로 SEM과 EDS는 상호보완적인 기능을 통하여 매우 밀접하게 사용되고 있으나 제조사와 기술적 근간의 차이로 인해 전혀 다른 방식으로 운영되고 있다. 일반적으로 SEM과 EDS는 별개의 시스템으로 스캔회로와 이미지 프로세싱 회로가 개별적으로 구현되어 있지만 로렌츠힘에 의해 발생하는 전자빔의 왜곡을 보정을 위해 EDS 시스템은 SEM 시스템과 연동되어 운영될 수 밖에 없다. 따라서, 각각의 시스템에서는 필요하지만 전체 시스템에서 보면 중복된 기능을 가지는 전자회로들이 존재하게 되고 이로 인해 SEM과 EDS에서 보는 시료의 이미지의 차이로 인한 측정오차가 발생한다(Fig. 2). EDS와 통합된 SEM 시스템은 중복된 기능인 스캔을 담당하는 scanning generation circuit과 이미지 프로세싱을 담당하는 FPGA circuit 및 응용프로그램을 SEM의 회로와 프로그램을 사용하게 함으로 SEM과 EDS가 보는 시료의 이미지가 정확히 일치함으로 이미지 캘리브레이션이 필요없고 측정오차가 제거된 EDS 측정이 가능하다. - PCDS 공정 중 발생하는 입자는 반도체 생산 수율에 가장 큰 영향을 끼치는 원인으로 파악되고 있으며, 생산수율을 저하시키는 원인 중 70% 가량이 이와 관련된 것으로 알려져 있다. 현재 반도체 공정 중이나 반도체 공정 장비에서 발생하는 입자는 제어가 되고 있지 않은 실정이며 대부분의 반도체 공정은 저압환경에서 이루어지기에 이 때 발생하는 입자를 제어하기 위해서는 저압환경에서 측정할 수 있는 측정시스템이 필요하다. 최근 국내에서는 CVD (Chemical Vapor Deposition) 시스템 내 파이프내벽에서의 오염입자 침착은 심각한 문제점으로 인식되고 있다(Fig. 3). PCDS (Particle Characteristic Diagnosis System)는 오염입자의 형상을 측정할 수 있는 SEM, 오염입자의 성분을 측정할 수 있는 EDS, 저압환경에서 기체에 포함된 입자를 빔 형태로 집속, 가속, 포화상태에 이르게 대전시켜 오염입자의 크기분포를 측정할 수 있는 PBMS가 일체화 되어 반도체 공정 중 발생하는 나노입자 대해 실시간으로 대처와 조치가 가능하게 한다.

  • PDF