Proceedings of the Korea Water Resources Association Conference
/
2005.09b
/
pp.842-845
/
2005
A method for the numerical simulation of two-dimensional free-surface flow resulting from the propagation of regular gravity waves over topography with arbitrary bottom shape is presented. The method is based on the numerical solution of the Euler equations subject to the fully nonlinear free-surface boundary conditions and the appropriate bottom, inflow and outflow conditions using a hybrid finite-differences and spectral-method scheme. The formulation includes a boundary-fitted transformation, and is suitable for extension to incorporate large-eddy simulation (LES) and large-wave simulation (LWS) terms for turbulence and breaking wave modeling, respectively. Results are presented for the simulation of the free-surface flow over two different bottom topographies, with constant slope values of 1:10 and 1:20, two different inflow wave lengths and two different inflow wave heights. An absorption outflow zone is utilized and the results indicate minimum wave reflection from the outflow boundary. Over the bottom slope, lengths of waves in the linear regime are modified according to linear theory dispersion, while wave heights remain more or less unchanged. For waves in the nonlinear regime, wave lengths are becoming shorter, while the free surface elevation deviates from its initial sinusoidal shape.
Recently, coastal erosion has been widely in progress and the erosion level becomes also serious in the world wide, espeically in East Sea in Korea. Since it would threaten the life, economics and security risk, it is necessary to much comprehend the reason why coastal erosion has occurred according to the geographical characteristics. Meanwhile, analysis about hydrodynamics of the solitary wave such as tunami in swash zone is needed for the best management practice of coastal erosion. Solitary wave is nonlinear wave and can be reproduced in the laboratoy scale by openning suddenly a sluice gate with water head difference, of which methodology was found in the literature, since it could be simply determined by a significant wave height. Thus, in this sutdy the generation of solitary wave was experimentalized using the sluice gate. Experimental conditions were classified by angles of a beach slope, a water level in a beach slope and a difference of water level between in a headtank and a channel bed. Two kinds of dimensionless analyses based from experimental results in this study were presented; the first analysis indicates nondimensionalization between the wave height and the water level in a beach slope in order to investigate characteristics of solitary wave approaching the beach. The second shows the other nondimensionalization between dynamic pressure and static pressure on a beach slope to investigate the relationship between wave breaking and wave pressure. Under the same conditions as laboratory experiments, the numerical results computed with a SWAN model embedded in FLOW 3D were compared in terms of wave height, and pressure on the beach slope, which shows good agreement with each other. Overall results from this study could provide fundamental hydraulic data for the reliabile verification of numerical simulation results about coastal erosion in swash zone caused by solitary waves.
Since Berkhoff proposed the mild-slope equation in 1972, it has widely been used for calculation of shallow water wave transformation. Recently, it was extended to give an extended mild-slope equation, which includes the bottom slope squared term and bottom curvature term so as to be capable of modeling wave transformation on rapidly varying topography. These equations were derived by integrating the Laplace equation vertically. In the present study, we develop a finite element model to solve the Laplace equation directly while keeping the same computational efficiency as the mild-slope equation. This model assumes the vertical variation of wave potential as a cosine hyperbolic function as done in the derivation of the mild-slope equation, and the Galerkin method is used to discretize . The computational domain was discretized with proper finite elements, while the radiation condition at infinity was treated by introducing the concept of an infinite element. The upper boundary condition can be either free surface or a solid structure. The applicability of the developed model was verified through example analyses of two-dimensional wave reflection and transmission. .
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.1
no.2
/
pp.33-38
/
2008
The baseline wander of ECG makes difficult to detect P-, Q-, R- and S-wave. This paper presents and compares two method to remove the baseline wander of ECG using slope traceing waves. For the first method that had been proposed already[1], the ascending slope tracing method is used to eliminate baseline wander. And the second method employs the contour of the approximated S-wave to remove baseline wander. These two methods are common to use the slope tracing wave. However, the first one is to get difference signals between the ascending tracing waves and ECG signals, and the other is to remove baseline wander using the contour of the approximated S-wave obtained from descending slope waves. To evaluate these methods, we apply to MIT/BIH database.
Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
/
2003.10a
/
pp.303-308
/
2003
In this paper, wave numerical modeling was experimented for the analysis of impact factors for the wave transmission as the incident wave and topographic conditions in the narrow channel sea. Recently, Although the results of many researcher for the wave modelling, numerical equations have limited to simulation of wave transformation effects. Despite of thispresent problems, the models was used to design the coastal structures in barrow channel sites. Finally, this paper estimated the wave model(mild slope eq. model) as the analysis of the wave energy transmission according to changing of impact factors(width of channel, bottom slope in channel, incident wave angle, wave period). As the results of numerical experiment, the major impact factors which influence to wave energy transmission were the width of channel and incident wave direction. But in the case that the width of channel is larger than 3L(L=Length of wave), the reduction of wave energy was small.
Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
/
2001.10a
/
pp.138-143
/
2001
Based on mild slope equation and parabolic approximation the forward diffraction of monochromatic waves by a straight breakwater are studied numerically. The characteristics and effects of stem wave along breakwater and the relations between the stem wave and incident wave angle are discussed.
In recent years, there's been strong demand for seawalls that havea gentle slope and permeability that serveswater affinity and disaster prevention from wave attack. The aim of this study is to examine wave transformation, including wave run-up that propagates on the coastal structures. A numerical model based on the weak nonlinear dispersive Boussinesq equation, together with the unsteady nonlinear Darcy law for fluid motion in permeable layer, is developed. The applicability of this numerical model is examined through Deguchi and Moriwaki's hydraulic model test on the permeable slopes. From this study, it is found that the proposed numerical model can predict wave transformation and run-up on the gentle slope with a permeable layer, but can't show accurate results for slopes steeper than about 1:10.
Journal of Korean Society of Coastal and Ocean Engineers
/
v.13
no.3
/
pp.202-208
/
2001
Explicit approximation has been developed to estimate the run-up height on S-berm breakwater on the basis of Saville's hypothetical slope method. For the explicit expression of run-up height several relations are developed to represent the ratio of run-up height against breakwater slope with various conditions of water depth and wave steepness. For the verification of explicit approximation the results are compared with Saville's measurement data and simple expression of Delft Hydraulic Laboratory.
Journal of Korean Society of Coastal and Ocean Engineers
/
v.16
no.2
/
pp.103-107
/
2004
Empirical equation has been developed by employing the new non-dimensional physical number 'wave action slope' for the estimation of breakwater armor weight. Van der Meer(1987) introduced Iribarren number for the same purpose, but his equation shows very different trend of distribution with the condition of Iribarren number. On the other hand the equation related with wave action slope keeps the same trend of distribution over the whole region. When the parameter is related to the Iribarren number, the equation of wave action slope has a very high accuracy.
Journal of Korean Society of Coastal and Ocean Engineers
/
v.13
no.2
/
pp.149-157
/
2001
From the weakly nonlinear mild-slope wave equations introduced by Nadaoka et al.(1994, 1997), a set of weakly nonlinear wave equations for rapidly varying topography are derived by including the bottom curvature and slope-squared tenns ignored in the original equations ofNadaoka et al. To solve the linear version of extended wave equations derived in this study one-dimensional finite difference numerical model is con¬structed. The perfonnance of the model is tested for the case of wave reflection from a plane slope with various inclination. The numerical results are compared with the results calculated using other numerical models reported earlier. The comparison shows that the accuracy of the numerical model is improved significantly in comparison with that of the original equations ofNadaoka et al. by including a complete set of bottom curva1w'e and slope¬squared terms for a rapidly varying topography.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.