Abstract
From the weakly nonlinear mild-slope wave equations introduced by Nadaoka et al.(1994, 1997), a set of weakly nonlinear wave equations for rapidly varying topography are derived by including the bottom curvature and slope-squared tenns ignored in the original equations ofNadaoka et al. To solve the linear version of extended wave equations derived in this study one-dimensional finite difference numerical model is con¬structed. The perfonnance of the model is tested for the case of wave reflection from a plane slope with various inclination. The numerical results are compared with the results calculated using other numerical models reported earlier. The comparison shows that the accuracy of the numerical model is improved significantly in comparison with that of the original equations ofNadaoka et al. by including a complete set of bottom curva1w'e and slope¬squared terms for a rapidly varying topography.
Nadaoka et al.에 의해 유도된 약 비선형 완경사 파동방정식을 급경사 지형에 적용할 수 있도록 바닥경사 곡률항과 바닥경사 제곱항을 포함하는 확장형 파동방정식을 유도하였다. 유도된 확장형 파동방정식의 선형식에 대해 일차원 유한차분 수치모형을 구성하고, 다양한 경사를 가치는 평면 경사지형에 의한 파의 반사에 대해 유도된 식과 수치모형을 검사하였다. 본 연구의 수치해와 기존의 여러 수치모형의 결과를 비교하여 본 결과, 급변수심에 대한 바닥경사 곡률항과 바닥경사 제곱항을 완전히 포함하여 원래의 Nadaoka et al. 식보다 정도가 상당히 개선되었다.