• Title/Summary/Keyword: Wave Transmission Approach

Search Result 68, Processing Time 0.028 seconds

Experimental and numerical investigation of a surface-fixed horizontal porous wave barrier

  • Poguluri, Sunny Kumar;Kim, Jeongrok;George, Arun;Cho, I.H.
    • Ocean Systems Engineering
    • /
    • v.11 no.1
    • /
    • pp.1-16
    • /
    • 2021
  • Experimental and numerical investigations were conducted to study the performance of a surface-fixed horizontal porous wave barrier in regular waves. The characteristics of the reflection and transmission coefficients, energy dissipation, and vertical wave force were examined versus different porosities of the barrier. Numerical simulations based on 3D Reynolds Averaged Navier-Stokes equations with standard low-Re k-ε turbulent closure and volume of fluid approach were accomplished and compared with the experimental results conducted in a 2D wave tank. Experimental measurements and numerical simulations were shown to be in satisfactory agreement. The qualitative wave behavior propagating over a horizontal porous barrier such as wave run-up, wave breaking, air entrapment, jet flow, and vortex generation was reproduced by CFD computation. Through the discrete harmonic decomposition of the vertical wave force on a wave barrier, the nonlinear characteristics were revealed quantitatively. It was concluded that the surface-fixed horizontal barrier is more effective in dissipating wave energy in the short wave period region and more energy conversion was observed from the first harmonic to higher harmonics with the increase of porosity. The present numerical approach will provide a predictive tool for an accurate and efficient design of the surface-fixed horizontal porous wave barrier.

Characteristics of Wave transmission due to the Variation in the Coss-section of a Waveguide (도파관의 단면 변화에 따른 파동 전달 특성)

  • Kim, Dae-Seung;Kim, Jin-Oh
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1338-1342
    • /
    • 2006
  • This paper presents the theoretical approach to describe the wave propagation in the waveguide with varying cross-section. The waveguides considered in this paper are stepped-rod, tapered-rod, and stepped rod with a tapered section at the middle of wave-transmission. The wave transmission ratio for displacement, stress, and power was calculated for these three rods. The distribution of the stress and displacement along the stepped rod with a tapered section was calculated and compared with the results obtained by FEM analysis.

  • PDF

Wave Transmission Approach of Coupled Plate Structures through Non-conservative Joints for Power Flow Analysis (파워흐름해석을 위한 비보존 조인트로 편성된 평판 구조물의 파워투과반사계수 해석)

  • Song, J.H.;Hong, S.Y.;Park, Y.H.;Park, D.H.;Kil, H.G.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.505-510
    • /
    • 2002
  • The attenuation of waves transmitted through non-conservative joints that are shown in many paractical structures, is affected by the impedance and the orientation of the joint. In this paper, the joints between plate structures are assumed to be modeled as linear spring-dashpot systems and the transmission and reflection of vibration energy in the medium to high frequency ranges are investigated. The calculated power transmission and reflection coefficients are applied to the PFA method for the prediction of energy density and intensity in structures.

  • PDF

Vibration Power Flow Analysis of Coupled Co-planar Rectangular Plates (동일 평면상에서 연성된 직사각형 평판의 진동파워흐름해석)

  • 박도현;홍석윤;길현권
    • Journal of KSNVE
    • /
    • v.8 no.6
    • /
    • pp.1053-1061
    • /
    • 1998
  • In this paper. the power flow analysis(PFA) method is applied to the prediction of the vibrational energy density and intensity of coupled co-planar plates. To cover the energy transmission and reflection at the joint of the plates. the wave transmission approach is Introduced with the assumption that all the incident waves are normal to the joint. By changing the frequency ranges and internal loss factors. we have obtained the reliable PFA results. and compared them with the analytical exact solutions.

  • PDF

Wave Transmission Approach of Coupled Plate Structures through Non-conservative Joints for Power Flow Analysis (파워흐름해석을 위한 비보존 조인트로 연성된 평판 구조물의 파워투과반사계수 해석)

  • Song, J-H;Hong, S-Y;Park, Y-H;Park, D-H;Kil, H-G
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.353.2-353
    • /
    • 2002
  • The attenuation of waves transmitted through non-conservative joints that are shown in many practical structures, is affected by the impedance and the orientation of the joint. In this paper, the joints between plate structures are assumed to be modeled as linear spring-dashpot systems and the transmission and reflection of vibration energy in the medium to high frequency ranges are investigated. (omitted)

  • PDF

Vibration Power Flow Analysis of Coupled Co-planar Orthotropic Plates (동일 평면상에서 연성된 직교이방성 평판의 진동파워흐름해석)

  • Song, Jee-Hun;Park, Do-Hyun;Hong, Suk-Yoon;Kil, Hyun-Gwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.9
    • /
    • pp.856-862
    • /
    • 2010
  • In this paper, the power flow analysis(PFA) method was developed to predict the vibrational responses of coupled co-planar orthotropic plates in frequencies ranging from medium to high. To cover the power transmission and reflection at the joint of the orthotropic plates, the wave transmission approach is applied with the assumption that all the incident waves are normal to the joint. Through numerical analyses, the power flow energy density and intensity fields of coupled co-planar orthotropic plates were compared with those of classical modal solutions by changing the frequency and internal loss factor, and they show good agreement in terms of the global decay and the attenuation patterns of the energy density.

Geometric and Wave Optic Features in the Optical Transmission Patterns of Injection-molded Mesoscale Pyramid Prism Patterned Plates

  • Lee, Je-Ryung;Je, Tae-Jin;Woo, Sangwon;Yoo, Yeong-Eun;Jeong, Jun-Ho;Jeon, Eun-chae;Kim, Hwi
    • Current Optics and Photonics
    • /
    • v.2 no.2
    • /
    • pp.140-146
    • /
    • 2018
  • In this paper, mesoscale optical surface structures are found to possess both geometric and wave optics features. The study reveals that geometric optic analysis cannot correctly predict the experimental results of light transmission or reflection by mesoscale optical structures, and that, for reliable analyses, a hybrid approach incorporating both geometric and wave optic theories should be employed. By analyzing the transmission patterns generated by the mesoscale periodic pyramid prism plates, we show that the wave optic feature is mainly ascribed to the edge diffraction effect and we estimate the relative contributions of the wave optic diffraction effect and the geometric refraction effect to the total scattering field distribution with respect to the relative dimension of the structures.

Wave Transmission Analysis of Co-planar Coupled Semi-infinite Mindlin Plate (동일 평면상에서 연성된 반무한 Mindlin 판의 파동전달해석)

  • Park, Young-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.6
    • /
    • pp.574-580
    • /
    • 2013
  • At high frequencies, the statistical approach such as statistical energy analysis(SEA) and energy flow analysis(EFA) has been applied for estimation of vibroacoustic responses of various built-up structures. The energy coupling relationship between finite coupled structures is required to estimate vibrational energetics of built-up structures. Mindlin plate theory includes the rotatory inertia and shear deformation effects which are dominant as frequency increases. In this paper, the wave transmission analysis is successfully performed for EFA of co-planar coupled Mindlin plates.

Development of Compliant and Dissipative Joints in Coupled Thin Plates for Vibrational Energy Flow Analysis (평판 구조물의 진동 파워흐름해석을 위한 비보존 조인트 개발)

  • Song, Jee-Hun;Hong, Suk-Yoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.10
    • /
    • pp.1082-1090
    • /
    • 2008
  • In this paper, a general solution for the vibrational energy and intensity distribution through a compliant and dissipative joint between plate structures is derived on the basis of energy flow analysis (EFA). The joints are modeled by four sets of springs and dashpots to show their compliancy and dissipation in all four degrees of freedom. First, for the EFA, the power transmission and reflection coefficients for the joint on coupled plate structures connected at arbitrary angles were derived by the wave transmission approach. In numerical applications, EFA is performed using the derived coefficients for coupled plate structures under various joint properties, excitation frequencies, coupling angles, and internal loss factors. Numerical results of the vibrational energy distribution showed that the developed compliant and dissipative joint model successfully predicted the joint characteristics of practical structures vibrating in the medium-to-high frequency ranges. Moreover, the intensity distribution of a compliant and dissipative joint is described.

A study on design and modeling of a Wave Energy Converter (파력발전기의 에너지 회생을 위한 연구)

  • Yoon, JongIl;Ahn, KyongKwan;Dinh, Quang Truong;Hoang, Huu Tien
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.167.2-167.2
    • /
    • 2011
  • Motions in nature, for example ocean wave, has been playing a significant role for generating electricity production in our modern life. This paper presents an innovative approach for electric power conversion of the vast ocean wave energy. Here, a floating-buoy wave energy converter (WEC) using hydrostatic transmission (HST), which is shortened as HSTWEC, is proposed and designed to enhance the wave energy harvesting task during all wave fluctuations. In this HSTWEC structure, the power take-off system (PTO) is a combination of the designed HST circuit and an electric generator to convert mechanical energy generated by ocean wave into electrical energy. Several design concepts of the HSTWEC have been considered in this study for an adequate investigation. Modeling and simulations using MATLAB/Simulink and AMESim are then carried out to evaluate these design concepts to find out the best solution. In addition, an adaptive controller is designed for improving the HSTWEC performance. The effectiveness of the proposed HSTWEC control system is finally proved by numerical simulations.

  • PDF