• Title/Summary/Keyword: Wafer Polishing

Search Result 256, Processing Time 0.026 seconds

Effects of Forced Self Driving Function in Silicon Wafer Polishing Head on the Planarization of Polished Wafer Surfaces (실리콘 웨이퍼 연마헤드의 강제구동 방식이 웨이퍼 연마 평탄도에 미치는 영향 연구)

  • Kim, Kyoungjin;Park, Joong-Youn
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.1
    • /
    • pp.13-17
    • /
    • 2014
  • Since the semiconductor manufacturing requires the silicon wafers with extraordinary degree of surface flatness, the surface polishing of wafers from ingot cutting is an important process for deciding surface quality of wafers. The present study introduces the development of wafer polishing equipment and, especially, the wafer polishing head that employs the forced self-driving of installed silicon wafer as well as the wax wafer mounting technique. A series of wafer polishing tests have been carried out to investigate the effects of self-driving function in wafer polishing head. The test results for wafer planarization showed that the LLS counts and SBIR of polished wafer surfaces were generally improved by adopting the self-driven polishing head in wafer polishing stations.

Effects of CMP Retaining Ring Material on the Performance of Wafer Polishing (CMP용 리테이닝 링의 재질이 웨이퍼의 연마성능에 미치는 영향)

  • Park, Ki-Won;Kim, Eun-young;Park, Dong-Sam
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.3
    • /
    • pp.22-28
    • /
    • 2020
  • This paper investigates the effects of retaining ring materials, particularly PPS and PEEK, used in the CMP process, on wafer polishing and ring wear. CMP can be performed using bonded type retaining rings made with PPS or injection molding type retaining rings made with PEEK. In this study, after polishing a wafer with a PPS retaining ring, the average profile height of the wafer was 0.098 ㎛ less than that of the wafer polished with a PEEK retaining ring, implying that PPS retaining rings achieve a higher polishing rate. In addition, the center area of the wafer profile had less deviation and improved flatness after polishing with the PPS ring. These results indicate that a higher polishing rate and smaller profile height deviation can be achieved using retaining rings made with PPS compared to retaining rings made with PEEK. Therefore, with semiconductor circuit patterns becoming finer and wafer sizes becoming larger, the use of PPS in CMP retaining rings can obtain more stable wafer polishing results compared to that of PEEK.

The Study on the Wafer Surface and Pad Characteristic for Optimal Condition in Wafer Final Polishing (최적조건 선정을 위한 Pad 특성과 Wafer Final Polishing의 가공표면에 관한 연구)

  • Won, Jong-Koo;Lee, Eun-Sang;Lee, Sang-Gyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.26-32
    • /
    • 2012
  • Polishing is one of the important methods in manufacturing of Si wafers and in thinning of completed device wafers. This study will report the characteristic of wafer according to processing time, machining speed and pressure which have major influence on the abrasion of Si wafer polishing. It is possible to evaluation of wafer abrasion by load cell and infrared temperature sensor. The characteristic of wafer surface according to processing condition is selected to use a result data that measure a pressure, machining speed, and the processing time. This result is appeared by the characteristic of wafer surface in machining condition. Through that, the study cans evaluation a wafer characteristic in variable machining condition. It is important to obtain optimal condition. Thus the optimum condition selection of ultra precision Si wafer polishing using load cell and infrared temperature sensor. To evaluate each machining factor, use a data through each sensor. That evaluation of abrasion according to variety condition is selected to use a result data that measure a pressure, machining speed, and the processing time. And optimum condition is selected by this result.

Analysis of Contact Pressure for a 300mm Wafer Polishing Table with Air-Bag Head (Air-Bag Head 가압식 300mm 웨이퍼 폴리싱 테이블의 가압 분포 해석)

  • Ro, Seung-Kook
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.310-317
    • /
    • 2013
  • In this paper, the contact pressure of the wafer and polishing pad for final polishing process for 300 mm-wafer were investigated through numerical analysis using FEM tool, ANSYS. The distribution of the contact pressure is one of main parameters which affects on the flatness and surface roughness of polished wafers. Two types of polishing head, a hard type head with ceramic disk and a soft type head with air bag were considered. The effects of the deformation and initial shape of table on the contact pressure were also examined. Both heads and tables were modeled as 3D finite element model from solid model, and the material properties of polishing pads and rubber plate for the air-bag head were obtained from tensile tests. The contact pressure deviation on wafer surface was smaller with air bag head than hard type head even when the table had form errors such as convex or concave. From this 3D analysis, it could be concluded that the air-bag head has better uniformity of the contact pressure on wafer. Also, the effects of inner diameter of air bag and radial clearance between wafer and retainer were investigated as view point of contact pressure concentration on the edge of wafer.

The Study on the Machining Characteristics of 300mm Wafer Polishing for Optimal Machining Condition (최적 가공 조건 선정을 위한 300mm 웨이퍼 폴리싱의 가공특성 연구)

  • Won, Jong-Koo;Lee, Jung-Taik;Lee, Eun-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.1-6
    • /
    • 2008
  • In recent years, developments in the semiconductor and electronic industries have brought a rapid increase in the use of large size silicon wafer. For further improvement of the ultra precision surface and flatness of Si wafer necessary to high density ULSI, it is known that polishing is very important. However, most of these investigation was experiment less than 300mm diameter. Polishing is one of the important methods in manufacturing of Si wafers and in thinning of completed device wafers. This study reports the machining variables that has major influence on the characteristic of wafer polishing. It was adapted to polishing pressure, machining speed, and the slurry mix ratio, the optimum condition is selected by ultra precision wafer polishing using load cell and infrared temperature sensor. The optimum machining condition is selected a result data that use a pressure and table speed data. By using optimum condition, it achieves a ultra precision mirror like surface.

Characteristics of Micro-polishing using the Electro-rheological Fluid (ER유체를 이용만 마이크로 폴리싱 특성)

  • 이재종;이응숙;황경현;민승기
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.38-42
    • /
    • 2002
  • In the recent, electro-rheological fluid has been used for micro polishing of the 3-dimensional micro-aspherical lens and some sectional parts with defects on the wide flat wafer. The ER fluid has the properties that its viscosity has drastic changed under some electric fields. Therefore, ER fluid can be applicable to the micro polishing fur some parts using these properties. In this paper, the experimental device has been constructed using the precision milling machine in order to micro polishing far some sectional parts of a 4 inches wafer It is consisted of a small steel electrode, a wafer fixture, DC10mA and 5KV power supply unit, and a controller unit. Using the ER experimental device, possibility of amending for wide flat wafer and micro polishing of some micro part has been analyzed.

  • PDF

Modification of the Supporting Structure of a Wafer Polishing Machine for the Improved Stability (안정성 향상을 위한 Wafer Polishing Machine의 지지구조 개선)

  • Ro, Seung-Hoon;Kim, Young-Jo;Kim, Dong-Wook;Yi, Il-Hwan;Park, Keun-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.144-151
    • /
    • 2012
  • Polishing is not only one of the most frequently adopted processes in modern industries, but also the most critical one to the surface quality of the products such as semi conductor wafers and LED sapphire wafers. With the required specifications for the wafer surface quality getting more and more strengthened, the manufacturers are spending huge amount of cost to renew the machine to meet the enhanced surface specifications. Surface qualities of the wafers are mostly damaged by the structural vibrations of the polishing machines. In this paper, the dynamic characteristics of a wafer polishing machine have been analyzed through the frequency response test and the computer simulation. And the supporting structure of a polishing machine has been investigated to minimize the vibration transmissions, to improve the stability of the machine and further to reduce the defects of the polished products. The result of the study shows that simple design modifications of the supporting structure without altering the main structure of the machine can substantially suppress the vibrations of the machine with negligible expenses.

A Study on Kinematical Modeling and Analysis of Double Side Wafer Polishing Process (실리콘 웨이퍼 양면 연마 공정의 기구학적 모델링과 해석에 관한 연구)

  • Lee, Sang-Jik;Jeong, Suk-Hoon;Lee, Hyun-Seop;Park, Sun-Joon;Kim, Young-Min;Jeong, Hae-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.485-485
    • /
    • 2009
  • Double side polishing process has been used for various industrial applications, such as polishing of semiconductor substrates and flat panel display glasses. In wafer manufacturing, double side polishing process is applied to improve wafer flatness and to minimize particle generation from wafers in device manufacturing processes, which is recognized as one of the most important processes. Whereas the kinematical modeling and analysis results of single side polishing, extensively used for chemical-mechanical polishing (CMP) in device manufacturing, are well investigated, the studies in conjunction with double side polishing are barely carried out, due to the complication of polishing system and the uncertainty of wafer motion in the carrier. This paper suggests the derivation of kinematical model with consideration of carrier and wafer motion in double side polishing, and then presents the effect of kinematical parameters on material removal amount and its non-uniformity. The kinematical analysis results help to understand the double side polishing process and to control the polishing results.

  • PDF

Monitoring of Break-in time in Si wafer polishing (실리콘 웨이퍼 연마에서의 Break-in 모니터링)

  • Jeong, Suk-Hoon;Park, Boum-Young;Park, Sung-Min;Lee, Sang-Jik;Lee, Hyun-Seop;Jeong, Hae-Do;Bae, So-Ik;Choi, Eun-Suck;Baeck, Kyoung-Lock
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.360-361
    • /
    • 2005
  • Rapid progress in IC fabrication technology has strong demand in polishing of silicon wafer to meet the tight specification of nanotopography and surface roughness. One of the important issues in Si CMP is the stabilization of polishing pad. If a polishing pad is not stabilized before main Si wafer polishing process, good polishing result can not be expected. Therefore, new pad must be subjected into break-in process using dummy wafers for a certain period of time to enhance its performance. After the break-in process, the main Si wafer polishing process must be performed. In this study, the characteristics of break-in process were investigated in Si wafer polishing. Viscoelastic behavior, temperature variation of pad and friction were measured to evaluate the break-in phenomenon. Also, it is found that the characteristic of the break-in seems to be related to viscoelastic behavior of pad.

  • PDF

Effect on protective coating of vacuum brazed CMP pad conditioner using in Cu-slurry (Cu 용 슬러리 환경에서의 보호성 코팅이 융착 CMP 패드 컨니셔너에 미치는 영향)

  • Song M.S.;Gee W.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.434-437
    • /
    • 2005
  • Chemical Mechanical Polishing (CMP) has become an essential step in the overall semiconductor wafer fabrication technology. In general, CMP is a surface planarization method in which a silicon wafer is rotated against a polishing pad in the presence of slurry under pressure. The polishing pad, generally a polyurethane-based material, consists of polymeric foam cell walls, which aid in removal of the reaction products at the wafer interface. It has been found that the material removal rate of any polishing pad decreases due to the so-called 'pad glazing' after several wafer lots have been processed. Therefore, the pad restoration and conditioning has become essential in CMP processes to keep the urethane polishing pad at the proper friction coefficient and to allow effective slurry transport to the wafer surface. Diamond pad conditioner employs a single layer of brazed bonded diamond crystals. Due to the corrosive nature of the polishing slurry required in low pH metal CMP such as copper, it is essential to minimize the possibility of chemical interaction between very low pH slurry (pH <2) and the bond alloy. In this paper, we report an exceptional protective coated conditioner for in-situ pad conditioning in low pH Cu CMP process. The protective Cr-coated conditioner has been tested in slurry with pH levels as low as 1.5 without bond degradation.

  • PDF