• 제목/요약/키워드: Vortex equation

검색결과 222건 처리시간 0.024초

소산이 고려된 보오텍스 모델과 버블 이론을 이용한 수중익 날개 끝 보오텍스 캐비테이션 거동 및 소음의 수치적 해석 (Numerical Analysis of Tip Vortex Cavitation Behavior and Noise on Hydrofoil using Dissipation Vortex Model and Bubble Theory)

  • 박광근;설한신;이수갑
    • 대한조선학회논문집
    • /
    • 제43권2호
    • /
    • pp.177-185
    • /
    • 2006
  • Cavitation is the dominant noise source of the marine vehicle. Of the various types of cavitation , tip vortex cavitation is the first appearance type of marine propeller cavitation and it generates high frequency noise. In this study, tip vortex cavitation behavior and noise are numerically investigated. A numerical scheme using Eulerian flow field computation and Lagrangian particle trace approach is applied to simulate the tip vortex cavitation on the hydrofoil. Vortex flow field is simulated by combined Moore and Saffman's vortex core radius equation and Sculley vortex model. Tip vortex cavitation behavior is analyzed by coupled Rayleigh-Plesset equation and trajectory equation. The cavitation nuclei are distributed and released in the vortex flow result. Vortex cavitation trajectories and radius variations are computed according to nuclei initial size. Noise is analyzed using time dependent cavitation bubble position and radius data. This study may lay the foundation for future work on vortex cavitation study and it will provide a basis for proper underwater propeller noise control strategies.

와동의 변화를 고려한 화염-와동 상호 작용 모사 (A Simulation of Flame-Vortex Interaction considering the Alteration of Vortex by Flame)

  • 강지훈;권세진
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제20회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.189-196
    • /
    • 2000
  • A numerical simulation was conducted to analyze the interaction of flame and vortices. The characteristic scales of flame and vortices were limited in the thin laminar flamelet regime. Within this regime, flame is assumed as discontinuity surface and its motion in flow field was described by G-equation instead of full governing equations. Additional approximations include distribution of line volume sources on flame surface to simulate effect of volume expansion. Contrast to previous calculations, current study employed vortex transport equation to evaluate attenuation and smearing of vortices. Two extreme conditions of frozen vortex and frozen flame were considered to validate the current method. Comparison with direct numerical simulation resulted in satisfactory quantitative agreement with higher computational efficiency which warrants the usefulness of the present model in more complex situation.

  • PDF

The Influence of a Vortex on a Freely Propagating Laminar Methane-Air Flame

  • Lee, Ki-Yong
    • Journal of Mechanical Science and Technology
    • /
    • 제18권5호
    • /
    • pp.857-864
    • /
    • 2004
  • The change in the NO emission indices (EINO) in a two-dimensional plane has been investigated, which is due to the interaction between a vortex and methane-air flames established at different equivalence ratios, by solving the field equation. After solving the field equation, the spatial distribution of G-values is obtained. The NO emission index is calculated after applying the appropriate relation between the G-values and the NO production rate or the mass fraction of methane obtained from the library of freely propagating flames created from detailed simulations. When a vortex exists in a reacting flow field, in general EINO slightly increases, whereas ElNO is lowered in the vicinity of the vortex regardless of flow direction. A change in vortex size has negligible impact on EINO$\_$T/ but increasing the vortex strength slightly increases EINO$\_$T/ in the domain of this study.

Vortex Filament Equation and Non-linear Schrödinger Equation in S3

  • Zhang, Hongning;Wu, Faen
    • Kyungpook Mathematical Journal
    • /
    • 제47권3호
    • /
    • pp.381-392
    • /
    • 2007
  • In 1906, da Rios, a student of Leivi-Civita, wrote a master's thesis modeling the motion of a vortex in a viscous fluid by the motion of a curve propagating in $R^3$, in the direction of its binormal with a speed equal to its curvature. Much later, in 1971 Hasimoto showed the equivalence of this system with the non-linear Schr$\ddot{o}$dinger equation (NLS) $$q_t=i(q_{ss}+\frac{1}{2}{\mid}q{\mid}^2q$$. In this paper, we use the same idea as Terng used in her lecture notes but different technique to extend the above relation to the case of $R^3$, and obtained an analogous equation that $$q_t=i[q_{ss}+(\frac{1}{2}{\mid}q{\mid}^2+1)q]$$.

  • PDF

마이크로 믹서에서 와도 지수와 혼합 지수의 관계;비용해성 물질 (The Relation between Vortex Index and Mixing Index in Micromixer;Insoluble Solution;Insoluble Solution)

  • 맹주성;김범중;조일대
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1841-1844
    • /
    • 2004
  • 'Mixing Index($D_I$)'s generally used to measure the degree of mixing. A new method to calculate $D_I$ was proposed, when insoluble solution flows in micromixer. 'Vortex Index (${\Omega}_I$)'which indicate the degree of chaotic advection, is defined and formulated. A lots of arbitrary shaped microchannels were tested to calculate the $D_I$ and ${\Omega}_I$. And then a simple algebraic equation, $D_I=A{\Omega}_I+B$, was obtained. This equation may be used instead of partial differential equation, concentration equation.

  • PDF

보오텍스 방법에 의한 순간 출발하는 2차원 날개 주위의 점성유동 모사 (Simulation of Viscous Flow Past NACA 0012 Poil using a Vortex Particle Method)

  • 이승재;김광수;서정천
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 춘계 학술대회논문집
    • /
    • pp.161-165
    • /
    • 2004
  • In the vortex particle method based on the vorticity-velocity formulation for solving the Wavier-Stokes equations, the unsteady, incompressible, viscous laminar flow over a NACA 0012 foil is simulated. By applying an operator-splitting method, the 'convection' and 'diffusion' equations are solved sequentially at each time step. The convection equation is solved using the vortex particle method, and the diffusion equation using the particle strength exchange(PSE) scheme which is modified to avoid a spurious vorticity flux. The scheme is improved for variety body shape using one image layer scheme. For a validation of the present method, we illustrate the early development of the viscous flow about an impulsively started NACA 0012 foil for Reynolds number 550.

  • PDF

다채널 고온 초전도 볼텍스 유동 트랜지스터의 I-V 특성 해석 (Analysis of I-V Characteristics in the Multi-channel Superconducting Vortex Flow Transistor)

  • 고석철;강형곤;임성훈;최효상;한병성
    • 한국전기전자재료학회논문지
    • /
    • 제16권10호
    • /
    • pp.931-937
    • /
    • 2003
  • The principle of the superconducting vortex flow transistor (SVFT) is based on control of the Abrikosov vortex flowing along a channel. The induced voltage is controlled by a bias current and a control current, instead of external magnetic field. The device is composed of parallel weak links with a nearby current control line. We explained the process to get an I-V characteristic equation and described the method to induce the external and internal magnetic field by the Biot-Savarts law in this paper. The equation can be used to predict the I-V curves for fabricated device. From the equation we demonstrated that the current-voltage characteristics were changed with input parameters. I-V characteristics were simulated to analyze a SVFT with multi-channel by a computer program.

Simple Harmonic Oscillation of Ferromagnetic Vortex Core

  • Kim, Jun-Yeon;Choe, Sug-Bong
    • Journal of Magnetics
    • /
    • 제12권3호
    • /
    • pp.113-117
    • /
    • 2007
  • Here we report a theoretical description of ferromagnetic vortex dynamics. Based on Thiele's formulation of the Landau-Lifshitz-Gilbert equation, the motion of the vortex core could be described by a function of the vortex core position. Under a parabolic potential generated in the circular magnetic patterns, the vortex core showed a circular rotation-namely the gyrotropic motion, which could be described by a 2-dimensional simple harmonic oscillator. The gyrotropic frequency and apparent damping constant were predicted and compared with the values obtained micromagnetic calculation.

마이크로 믹서에서 와도 지수에 의한 비용해성 물질의 혼합 예측 (Prediction of Degree of Mixing for Insoluble Solution with Vortex Index in a Passive Micromixer)

  • 조일대;김범중;맹주성
    • 대한기계학회논문집B
    • /
    • 제29권2호
    • /
    • pp.232-238
    • /
    • 2005
  • The 'Mixing Index($D_I$)' is used as a conventional guidance measuring the degree of mixing for multiphase flows. For the case when insoluble solutions flow in a passive micromixer, a new method to calculate $D_I$ is proposed. The 'Vortex Index(${\Omega}_I$)' is suggested and formulated. We infer that ${\Omega}_I$ relates to the degree of chaotic advection. Various arbitrary shaped microchannels were tested to calculate the $D_I\;and\;{\Omega}_I$, and then a simple algebraic equation, $D_I=Aexp(B{\Omega}_I)$, is obtained. This equation may be used instead of the conventional partial differential equation, concentration equation, to estimate the degree of mixing.