The Influence of a Vortex on a Freely Propagating Laminar Methane-Air Flame

  • Lee, Ki-Yong (Andong National University, School of Mechanical Engineering)
  • Published : 2004.05.01

Abstract

The change in the NO emission indices (EINO) in a two-dimensional plane has been investigated, which is due to the interaction between a vortex and methane-air flames established at different equivalence ratios, by solving the field equation. After solving the field equation, the spatial distribution of G-values is obtained. The NO emission index is calculated after applying the appropriate relation between the G-values and the NO production rate or the mass fraction of methane obtained from the library of freely propagating flames created from detailed simulations. When a vortex exists in a reacting flow field, in general EINO slightly increases, whereas ElNO is lowered in the vicinity of the vortex regardless of flow direction. A change in vortex size has negligible impact on EINO$\_$T/ but increasing the vortex strength slightly increases EINO$\_$T/ in the domain of this study.

Keywords

References

  1. Ashurst, W. M. and McMurtry, P. A., 1989, 'Flame Generation of Vorticity : Vortex Dipoles from Monopoles,' Combust. Sci. and Tech., Vol. 66, pp. 17-37 https://doi.org/10.1080/00102208908947137
  2. Ashurst, W. T., Sivashinsky, G. I. and Yakhot, V., 1988, 'Flame Front Propagation in Non-steady Hydrodynaic Fields,' Combust. Sci. and Tech., Vol. 62, pp. 273-284 https://doi.org/10.1080/00102208808924013
  3. Borghi, R., 1985, On the structure and morphology of turbulent premixed flames, In Recent Advances in the Aerospace Sciences (Edited by Casci, C.), Plenum Press, New York, pp. 117-138
  4. Crandall, M. G. and Lions, P. L., 1983, 'Viscosity Solutions of Hamiltion-Jacobi Equations,' Trans. Amer. Math. Soc., Vol. 277, pp. 1-42 https://doi.org/10.2307/1999343
  5. Crandall, M. G. and Lions, P. L., 1984, 'Two Approximations of Solutions of hamiltion-Jacobi Equations,' Math. Comp., Vol. 43, pp. 1-19 https://doi.org/10.2307/2007396
  6. Frenklach, M., Wang, H., Bowman, C. T., Hanson, R. K., Smith, G. P., Golden, D. M., Gardiner, W. C. and Lissianski, V., 1994, 'An Optimized Kinetics Model for Natural Gas Combustion,' Twenty-Fifth Symposium (International) on Combustion, Irvine, California, Work-In-Progress Poster Session 3, Number 26
  7. Karasalo, I. and Namer, I., 1982, 'Numerical Study of a Flame in a Karman Vortex Street,' Combust. Flame, Vol. 47, pp. 255-267 https://doi.org/10.1016/0010-2180(82)90105-5
  8. Kee, R. J., Grcar, J. F., Smooke, M. D., and Miller, J. A., 1985, 'A Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flames,' Sandia Report, SAND85-8240UC-401
  9. Kee, R. J., Rupley, F. M. and Miller, J. A., 1989, 'Chemkin-II : A FORTRAN Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics,' Sandia Report, SAND89-8009BUC-706
  10. Kerstein, A. R., Ashurst, W. T. and Williams, F. A., 1988, 'Field Equation for Interface Propagation in an Unsteady Homogeneous flow Field,' Phys. Rev. A, Vol. 17, pp. 2728-2731 https://doi.org/10.1103/PhysRevA.37.2728
  11. Marble, F. E., 1985, Growth of a Diffusion Flame in the Field of a Vortex, In Recent Advances in the Aerospace Sciences (Edited by Casci, C.), Plenum Press, New York, pp. 395-413
  12. Markstein, G. H., 1964, Theory of Flame Propagation, In Nonsteady Flame Propagation (Edited by Markstein, G. H.), The MaCMillan Company, New York
  13. Miller, J. A. and Bowman, C. T., 1989, 'Mechanism and Modeling of Nitrogen Chemistry in Combustion,' Prog. Energy Combust. Sci., Vol. 15, pp. 287-338 https://doi.org/10.1016/0360-1285(89)90017-8
  14. Panton, R. L., 1984, Incompressible Flow, John Wiley and Sons, New York
  15. Peters, N., 1984, 'Laminar Diffusion Flamelet Models in Non-Premixed Turbulent Combustion,' Prog. Energy Combust. Sci., Vol. 10, pp. 319-339 https://doi.org/10.1016/0360-1285(84)90114-X
  16. Peters, N. and Williams, F. A., 1988, 'Premixed Combustion in a Vortex,' Twenty-Second Symposium (International) on Combustion, The Combustion Institute, pp. 495-503
  17. Poinsot, T., Veynante, D. and Candel, S., 1990, 'Diagrams of Premixed Turbulent Combustion Based on Direct Simulation,' Twenty-Third Symposium (International) on Combustion, The Combustion Institute, pp. 613-619
  18. Rhee, C. W., 2001, 'Flame Propagation, Flame-Vortex Intraction, Flame Cusping, Flameholding,' KSME International J., Vol. 15, pp. 623-629 https://doi.org/10.1007/BF03184378
  19. Rutland, C. J. and Ferziger, J. H., 1991, 'Simulations of Flame-Vortex Interactions,' Combust. Flame, Vol. 84, pp. 343-360 https://doi.org/10.1016/0010-2180(91)90011-Y
  20. Sethian, J. A., 1985, 'Curvature and the Evolution of Fronts,' Commun. Math. Phys., Vol. 101, pp. 487-499 https://doi.org/10.1007/BF01210742
  21. Takeno, T. and Nishioka, M., 1993, 'Species Conservation and Emission Indices for Flames Described by Similarity Solutions,' Combust. Flame, Vol. 92, pp. 465-468 https://doi.org/10.1016/0010-2180(93)90157-X