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Simple Harmonic Oscillation of Ferromagnetic Vortex Core
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Here we report a theoretical description of ferromagnetic vortex dynamics. Based on Thiele’s formulation of
the Landau-Lifshitz-Gilbert equation, the motion of the vortex core could be described by a function of the vor-
tex core position. Under a parabolic potential generated in the circular magnetic patterns, the vortex core
showed a circular rotation—namely the gyrotropic motion, which could be described by a 2-dimensional simple
harmonic oscillator. The gyrotropic frequency and apparent damping constant were predicted and compared

with the values obtained micromagnetic calculation.

Keywords : ferromagnetic vortex, vortex dynamics, micromagnetic calculation

1. Introduction

The ferromagnetic vortex structure—curling in-plane
magnetization around the core of out-of-plane magneti-
zation—is one of the common magnetic structures usually
appearing in typical size of the magnetic application
device elements, in particular in materials with low
crystalline anisotropy. Despite of their technological
importance in spintronic devices, experimental characteri-
zation on their detailed properties has begun only recently
by means of either the advanced magnetic imaging
technologies [1, 2] or the picosecond-range time-resolved
dynamics probing technologies [3, 4]. The most interest-
ing features of the vortex dynamics are their low frequ-
ency nature with a long lifetime—the frequency in the
range of sub-GHz with the lifetime in the range of tens of
nanoseconds. The low frequency mode basically comes
from the slow translation speed of the vortices (~100 m/s)
over the traveling path length (~ a few hundred nano-
meters). The vortex translation is basically similar to the
group velocity of the spin wave packet, which is much
slower than the phase velocity especially for small wave
packet structures. On the other hand, the long lifetime is
ascribed to the small volume of the vortex core where the
damping occurs in the motion.

The vortex motion has been explained by the Thiele’s
formulation [5], which provides a force equation as a
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function of the vortex core position. In his formulation,
Thiele assumed a rigid vortex structure, which could be
clearly parameterized by only one variable—the position
of vortex core. However, in the patterned magnetic struc-
ture, the boundary might disturb the vortex structure and
thus, the rigid vortex assumption does not hold. Alter-
native approach is the “surface-charge-free” spin distribu-
tion model [6]. From the FMR measurements, Novad et
al. confirmed this model’s validity experimentally [7]. In
this paper, using “surface-charge-free” spin distribution
model, we propose a modified Thiele’s equation, which
incorporates with the circular boundary condition.

2. Theoretical Description

An alternative description of the Landau-Lifshitz-Gilbert
(LLG) equation was proposed by Thiele. His derivation
can be briefly summarized as follows. The LLG equation
is originally given by

dM_ =2 as dM
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The time-derivative term in the left side can be written by
use of vector algebra as
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Here the uniform magnitude of the magnetization was
assumed i.e.
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Then, the LLG equation becomes
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This equation can be rewritten as

Iy M x (B + H + H)=0, (5)

after one defines the magnetic field terms in the equation
as
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where Hg is the gyrotropic field and H is damping
field. H is the effective field originally appearing in the
LLG equation. Eq. (5) holds when

H+H +H=0. %)

This is the alternative formulation of the LLG equation.

For a rigid vortex, the magnetization _glistribution can be
described by the vortex core position X . Thiele used the
Cartesian coordinate under an assumption of rigid vortex
in the linear translation. The magnetization is then written
as

S .00 s 3
M(X)=Mo(x-X), ®)

where % is the space coordinate and 1\70 is the magneti-
zation distribution when the vortex core locates at origin.

The work density d_o)ne _i)n magnetization under a
magnetic field is dw = H - dM . Since the magnetization
is a function of position, the equation can be written for
the Cartesian coordinate as

dw=H- gﬂdx fdX;, ©

for summation over i = x, y, z, where the force density f; is
given by

S oM o oM
fi=H-52=-H-5-. (10)
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The gyrotropic force density then becomes

Fi=-K %f |7l1 ze,mnM,aa—Ai—:"dZ", (11)
and the damping force density is
Sa
poanpit 2 e (12)
By use of the rigid vortex assumption,
dM _dM,dX; oM, oM,
TOX, dr ox, T ok (1)

)

Substituting Eq. (13) into Eq. (11), the gyrotropic force
density becomes
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with the gyrocouphng vector
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and the dissipation force density becomes
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with the dissipation tensor
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The total force F; exerting on the vortex core position is
then given by integrating the force density f; over the
volume V. Thus, the total force terms become

Fi = [ffdV =~£3G, a8)

F{= jf, dV =Dv;,
where the total gyrocoupling vector and the total dissipa-
tion tensor are
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The force from the effective field 1?1 ’ originally appearing
in the LLG equation can be simply given by the magnetic
potential as
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where the magnetic potential includes the exchange,
anisotropy, and the magnetostatic energy and is given by
the function of the vortex position X . The magnetic field
equation given in Eq. (6) is then converted into the force
equation as

Pl + P =G x9-V U+ D-3=0. 1)

This is the Thiele’s equation originally described in his
paper [S]. Note that all terms are in the dimension of
force and given by a function of the vortex position.

For the thin film geometry the total gyrocouphng vector
G is perpendicular to the film plane, i.e. G Gz if we put
the film on (x,y) plane. The gyroconstant is G =
2mgptyM,ly, t is thickness. The topological charge q =
+ 1, +2.... determines direction of core rotation and its
frequency. The vortex polarization p is determined by M.,
It is ascribed to the assumption of thg uniform magneti-
zation across the film thickness i.e. dM/dz=0. From this
assumption, the z-index components of total dissipation
tensor ) vanish i.e. D, =D,=D.=D.=D,=0. Together
with this, for the vortex structure, the off-diagonal
components of total dissipation tensor vanish i.e.
D,,=D,,=0 and the diagonal terms have the unique value
i.e. Du=Dy=D due to the symmetry. Thus the total
d1ss1pat10n force can be written as F' =p-y=DV where
¥ lies in (x, y) plane. The magnetic potential is an even
function of the vortex position arougd the equilibrium
position. For a small displacement X from the equili-
brium position, it can be thus giveen by a parabolic
function of the vortex position i.e. U(X)= 1/2kX*, where
the restoring force constant k is related to the initial
susceptibility [6].

The gyrocoupling coefficient G and the dissipation
coefficient D are constant irrespective to the vortex posi-
tion as we will discuss later by means of micromagnetic
evaluatiog. Then, Eq. (19) can be written with the vortex
position X=(x, y, 0) as

G(i] - yi)—k(xi — yj)+D(xi - 37)=0. (22)
Decoupling the 1 and } components results in
{ ~Gy+Ds—kx=0 23
+Gx+Dy—ky=0

After eliminating y, the equation is equivalent to the
damped harmonic oscillation equation as
£+2¥k+ wpx=0, (24)

where the dissipation coefficient and the natural frequ-
ency corresponds to
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Thus, the experimental gyrotropic vortex motion of the
circular (or spiral) rotation can be explained.

3. Numerical Calculation

To check the validity of the analytic description, a
micromagnetic simulation was carried out by use of
OOMMEF [8]. The assumptions made in the model were
the invariance of the dynamics parameters G and D,
together with the parabolic dependence of the internal
magnetic energy. Once all these assumptions are turned
out to be valid, the model can be used in prediction the
vortex dynamics. Here we present the micromagnetic
evaluation of the assumptions.

Figure 1 shows a time evolution of the vortex core
position of permalloy disk with 200 nm in diameter and
10 nm in thickness. The material parameters of permalloy
was chosen as the default values in OOMMF ie. the
saturation magnetization My=8.6x10° A/m and the ex-
change stiffness A,=1.3x10™"" J/m with zero anisotropy.
The Gilbert damping coefficient was 0.05 and the lateral
size of the unit cell was 2.5 nm. The vortex was initially
excited under an external magnetic field 10 mT and then,
released by sudden removal of the magnetic field. Figure
1(a) shows the spiral motion of the vortex core position—
so-called gytropic motion. Fig. 1(b) shows the dis-
placement of the vortex in the x axis with time, which
shows the damped harmonic oscillation as predicted in
Eq. (24). Damped oscillating motion was first obtained by
Guslienko er al. [6], and we reconfirmed spiral and
harmonic oscillation motion of vortex.

Thiele’s gyrotropic parameters G and D were evaluated
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Fig. 1. (a) The vortex core trajectory in XY plane. (b) The dis-
placement in the x axis with time.
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Fig. 2. (a) The gyrocoupling coefficient G of 200 nm and 300
nm disks with respect to time. (b) The gyrocoupling coeffi-
cient with respect to the disk diameter.

from the micromagnetic results. In Fig. 2(a), the gyro-
coupling coefficient G initially shows large fluctuation
originated from the sudden removal of the magnetic field,
which generated noisy broadband spin waves. Such spin
waves diminished quickly within one nanosecond and
then, a stable vortex configuration came out. The value of
the gyrocoupling coefficient changed a little bit with time,
but variation was less than 0.1% to the mean value. Such
a small variation would be ignorable compared with the
accuracy provided by the experimental measurement
technique and thus, it is reasonable to consider the
gyrocoupling coefficient unchanged during the motion.

Fig. 2(b) shows the gyrocoupling coefficient with
respect to the disk size. With increasing the disk size, the
gyrocoupling coefficient converged to a certain value. It
can be understood since the gyrocoupling vector given in
Eq. (15) has the finite values only in the vicinity of the
vortex core and thus, a disk certainly larger than the
vortex core size has the unique gyrocoupling coefficient
irrespective to the disk size. Even for the smallest disk the
variation was again quite less than 0.1% and thus, it is
reasonable to assume that the universal value of the
gyrocoupling coefficient with is

G=6.004th—/I§ ,
71

where # is the thickness of the film. The analytical model
predicts gyrocoupling coefficient 6.283, and this value
agreed well experimentally [7]. But analytical prediction
and simulation result for gyrocoupling coefficient has
only a few differences probably come from finite thick-
ness effect.

Fig. 3(a) shows the reduced damping coefficient d with
time. d is d =-DyMt;. The fluctuation came from the
numerical error generated at the discrete disk boundary,
since the circular disk in the simulation was discretized
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Fig. 3. (a) The reduced damping coefficient 4 of 200 nm and
300 nm disks with time. (b} Reduced damping coefficient with
respect to the disk diameter. Circle dots are simulated results,
solid line is calculated value.
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Fig. 4. (a) The internal magnetic energy with respect to the
vortex position. The energy was normalized by the magneto-
static energy i.e. 27 Mj. (b) The restoring force constant k
with respect to the sample diameter. The constant was in the
dimension of nm™,

based on the square cells. It is interesting to note that the
mean value of the reduced damping coefficient was
almost unchanged within a sample, but largely different
between samples. Fig. 3(b) shows the simulated and
calculated damping coefficient with respect to the disk
size. Note that the disk size is in logarithmic scale and the
reduced damping coefficient shows clear logarithmic
dependence to the disk size. In soliton model of the
magnetic vortex, calculation yields D = —arM, t:[2+In(R/
R)Vy. Here « stands for the Gilbert damping constant.
The thickness dependent vortex R, is R, = 0.68L,3(t{/éLe)”3
at t,> L,, and exchange length L, is Le=(2A/Mf) [9].
The simulated result is similar to calculated value.

The internal magnetic energy with respect to the vortex
position is shown in Fig. 4(a). As discussed earlier, it
shows an even function of the vortex position around the
equilibrium position. It is clear that the function could be
well fit by a parabolic function of the vortex position i.e.
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Ux )=1/2kX* for a small displacement )_2 from the
equilibrium position. The restoring force constant k with
respect to the sample diameter is shown in Fig. 4(b).

Summary

We developed an analytic model of the simple har-
monic oscillatory behavior in the vortex dynamics. The
validity of the model was confirmed by a numerical
calculation based on a micromagnetic solver - OOMMF.
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