• Title/Summary/Keyword: Volume Efficiency

Search Result 2,129, Processing Time 0.028 seconds

Assessment of Climate Change Impact on Imha-Dam Watershed Hydrologic Cycle under RCP Scenarios (RCP 기후변화 시나리오에 따른 임하댐 유역의 미래 수문순환 전망)

  • Jang, Sun-Sook;Ahn, So-Ra;Joh, Hyung-Kyung;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.1
    • /
    • pp.156-169
    • /
    • 2015
  • This study was to evaluate the RCP climate change impact on hydrological components in the Imha-Dam watershed using SWAT(Soil and Water Assessment Tool) Model. The model was calibrated for six year(2002~2007) and validated for six year(2008~2013) using daily observed streamflow data at three watershed stations. The overall simulation results for the total released volume at this point appear reasonable by showing that coefficient of determination($R^2$) were 0.70~0.85 and Nash-Sutcliffe model efficiency(NSE) were 0.67-0.82 for streamflow, respectively. For future hydrologic evaluation, the HadGEM3-RA climate data by scenarios of Representative Concentration Pathway(RCP) 4.5 and 8.5 of the Korea Meteorological Administration were adopted. The biased future data were corrected using 34 years(1980~2013, baseline period) of weather data. Precipitation and temperature showed increase of 10.8% and 4.9%, respectively based on the baseline data. The impacts of future climate change on the evapotranspiration, soil moisture, surface runoff, lateral flow, return flow and streamflow showed changes of +11.2%, +1.9%, +10.0%, +12.1%, +18.2%, and +11.2%, respectively.

Time-dependent characteristics of viscous fluid for rock grouting (암반 그라우팅을 위한 점성유체의 시간의존 특성 분석)

  • Lee, Jong-Won;Kim, Ji-Yeong;Weon, Jo-Hyun;Oh, Tae-Min
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.465-481
    • /
    • 2022
  • Rock grouting is important to improve the waterproof efficiency and mechanical strength of rock medium with joint for utilizing the underground rock space such as tunnel. The grouting materials typically has been used the cement materials, which represent Bingham fluid model. This model can express the relationship of viscosity and yield strength. In addition, it is dependent with elapsed time. The grouting injection performance can be deteriorated with an increase of viscosity and yield strength in the grouting process if the time dependence is ignored. Therefore, in this study, the characteristics of viscosity and yield strength were investigated according to water-cement ratio and time dependence in the laboratory test. Numerical simulation was carried out to investigate the grouting performance according to the time dependence of characteristics in terms of the viscosity model. Given the results, the grouting injected distance and cumulative grout volume were significantly decreased when the time dependence of grouting material was considered. This study, considering the characteristics according to the time dependence of viscosity and yield strength, will be meaningful to the design of grouting injection in field applications.

Study on the Piezoelectric Energy Harvesting Technology for the Energy Conversion of Vibration in Automobiles (자동차 진동 에너지 변환을 위한 압전 에너지 하베스팅에 관한 연구)

  • Lee, Hyeon Yeong;Kim, Kwangwon;Ye, Jiwon;Woo, Suhyeon;Lee, Geon;Lee, Seungah;Jeong, Seong Rok;Jeong, Seon Hye;Kim, Ho Seong;Nam, Ga Hyeon;Jo, Yun Yeong;Choi, Han Seung;Ryu, Jungho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.6
    • /
    • pp.495-504
    • /
    • 2021
  • Energy Harvesting is a technology that can convert wasted energy such as vibration, heat, light, electromagnetic energy, etc. into usable electrical energy. Among them, vibration-based piezoelectric energy harvesting (PEH) has high energy conversion efficiency with a small volume; thus, it is expected to be used in various autonomous powering devices, such as implantable medical devices, wearable devices, and energy harvesting from road or automobiles. In this study, wasted vibration energy in an automobile is converted into electrical energy by high-power piezoelectric materials, and the generated electrical energy is found to be an auxiliary power source for the operation of wireless sensor nodes, LEDs, etc. inside an automobile. In order to properly install the PEH in an automobile, vibration characteristics includes frequency and amplitude at several positions in the automobile is monitored initially and the cantilever structured PEH was designed accordingly. The harvesting properties of fabricated PEH is characterized and installed into the engine part of the automobile, where the vibration amplitude is stable and strong. The feasibility of PEH is confirmed by operating electric components (LEDs) that can be used in practice.

Method development for efficacy testing of veterinary disinfectants using bacteriophage MS2 (Bacteriophage MS2를 이용한 소독제 효력시험 확립에 관한 연구)

  • Rhee, Chae Hong;Kim, Soohee;Han, Bokhee;Kim, Young-Wook;Her, Moon;Jeong, Wooseog
    • Korean Journal of Veterinary Service
    • /
    • v.44 no.3
    • /
    • pp.149-155
    • /
    • 2021
  • In virucidal efficacy testing, the chemical inactivation cannot be determined for all viruses due to the difficulties or the inability to culture sufficiently or the risk of exposure to the viruses. Therefore, disinfectants against these viruses could be evaluated by different methods and surrogate viruses are used as alternative. In this study we developed a method for efficacy testing of veterinary disinfectants using one of the candidate surrogate viruses, bacteriophage MS2, as part of the research on the selection of surrogate viruses for efficiency of efficacy testing of veterinary disinfectants. This method is based on the Animal and Plant Quarantine Agency (APQA) guidelines for efficacy testing of veterinary disinfectants. Bacteriophage and disinfectant are reacted in suspension in accordance with the APQA guidelines and then a newly established double agar layer method is applied for the efficacy test. The double agar layer method is summarized as follows: 1) The bottom agar with 1.5% agar is boiled and cooled before poured into petri dishes at volume of 20 mL, and dried under biological safety cabinet. 2) The top agar with 0.7% agar is boiled and kept at 50℃ before E. coli culture was seeded. 3) The serially diluted bacteriophage MS2-disinfectant mixtures 0.05 mL and E. coli host 0.01 mL (OD600 0.2~0.3) are mixed with 5 mL of top agar and incubate them at 50℃ for 5 min for reaction. 4) The resulting mixture is poured over top of a bottom agar plate and rocked sufficiently to ensure that the top agar covers the entire surface of the bottom agar. 5) The double agar layer is then placed under biological safety cabinet to allow the agar layer to solidify and subsequently incubated at 37℃ for 24 hr. 6) Following incubation, the plates may be inspected for plaques and record results.

Preparation and Characterization of Porous Catalyst for Formaldehyde Removal using Domestic Low-grade Silica (국내산 저품위 실리카를 이용한 포름알데히드 제거용 다공성 촉매의 제조 및 특성)

  • Han, Yosep;Jeon, Ho-Seok;Kim, Seongmin
    • Resources Recycling
    • /
    • v.30 no.2
    • /
    • pp.68-74
    • /
    • 2021
  • This study investigated formaldehyde (HCHO) removal by preparing porous supports using domestic low-grade silica coated with Co-ZSM5 and Cu-ZSM5 as the catalysts. First, the sample of the raw material for the support contained 90% silica with quartz crystal phase, which was confirmed as low-grade silica. According to Energy-dispersive X-ray spectroscopy (EDS) and Fourier-transform infrared spectroscopy (FT-IR) analyses, the catalysts, Co-ZSM5 and Cu-ZSM5, were successfully coated on the surface of the porous silica supports. During the removal test of HCHO using the prepared Co-ZSM5 and Cu-ZSM5 coated beads, depending on the reaction temperature, the Co-ZSM5 coated beads exhibited higher removal efficiencies (>97%) than the Cu-ZSM5 beads at 200 ℃. The higher efficiency of the Co-ZSM5 coating may be attributed to its superior surface activity properties (BET surface area and pore volume) that lead to the favorable HCHO decomposition. Therefore, Co-ZSM5 was determined to be the suitable catalyst for removing HCHO as a coating on a porous support fabricated using domestic low-grade silica.

The Economic Analysis of Underground Parking Lot Frames adopting 8-Bay Parking Modules (8-Bay 주차모듈을 적용한 아파트 지하주차장 구조의 경제성 분석)

  • Yu, Yongsin;Yoon, Bohyung;Kim, Minsu;Kim, Taewan;Lee, Chansik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.1
    • /
    • pp.52-61
    • /
    • 2019
  • On 30 June, 2017, the Ministry of Land, Infrastructure, and Transport announced the minimum size of parking section will be expanded in parking lots. The expansion of parking section could lead to increase in apartment prices because of increase in total area of the parking lots. It is necessary to adjust the column spacing and number in the parking lots and to apply the 8-Bay long-span parking module with good parking efficiency. According to the study, the construction cost of the 6-Bay module and 8-Bay module was almost the same. But The 8-Bay module was more economical than the 6-Bay module because of the reduction in total area of 8-Bay multi-moduel. The Result of construction cost of 8-Bay modules, Removal Deck-plate RC system was most economical. While the construction cost of PC system was higher due to increase in volume of the member, it would ensure sufficient economy by reducing the girder height to apply a pre-stress method. Also, the construction cost of hollow slab system was the highest. But it could be used as the underground parking lots for apartment, because it had the lowest cost per square meter. This Study has a academic significance by proving the applicability of the 8-Bay Module to underground parking lot of apartment. And it is expected that this study will be used as basic data to derive optimal construction method that applies 8-Bay Module.

Study on the Risk Management of the CERs Investment - Regarding Registration Risks and Price Change Risk in Investing Primary CERs - (탄소배출권 투자와 위험관리방안 연구 - 일차배출권(Primary CER) 투자 시 등록위험 및 가격변동 위험을 중심으로 -)

  • Lee, Chang Seok;Kim, Yun Soung;Jeon, Eui Chan
    • Journal of Climate Change Research
    • /
    • v.2 no.2
    • /
    • pp.115-131
    • /
    • 2011
  • Out of all the possible actions that can be taken to respond to greenhouse gas reduction, including development of greenhouse gas reduction technology, infrastructure, actions to improve energy saving and efficiency, and offset with carbon emission reductions (CERs), this study shall focus on the investment on CERs. This study will take a look at risks involved with investing in CERs such as UN registration refusal risk and CERs price fluctuation, and will design risk management model which shall be verified. The goal of this paper is to provide optimized CERs investment strategies for different types of investors, such as general trading companies seeking for investment opportunities and financial companies with plans for green products development and investment by preparation for carbon market. It is expected that the global competitiveness of domestic financial companies shall be improved by taking actions on carbon market instead of previous passive response to climate change and that Korea, the number two Carbon Emissions supplier and number one derivatives market in terms of volume, shall be able to lead the worldwide carbon market.

A Study on the Effect of Artificial Cutting Slot on the Fragmentation and Vibration Propagation in the Full-scaled Concrete Block Blasting (콘크리트 블록 발파 실험을 통한 인공 슬롯 자유면이 진동전파 및 파쇄효과에 미치는 영향에 관한 연구)

  • Oh, Se-Wook;Min, Gyeong-Jo;Park, Se-Woong;Park, Hoon;Noh, You-Song;Suk, Chul-Gi;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.692-705
    • /
    • 2018
  • Ground vibration is one of the remarkable issues in tunnel blasting. In recent studies, to improve the fragmentation with reduction of ground vibration in tunnel blasting, a vibration-controlled blasting method with artificial cutting slot near the center-cut holes has been suggested. This study examines the effect of the different arrangement of artificial cut-slot on the vibration reduction and fragmentation by performing the full-scaled concrete block blast experiments and the numerical simulations with 3D-DFPA. The results show that the existence of artificial slot contributes to the improvement of vibration reduction, blast fragmentation and the efficiency of the cutting slot blast. It can be explained that the artificial slot play a free surface role and should decrease the burden between the cut holes. Crater volumes of the blasted concrete blocks were measured by 3-dimensional digital image analysis and compared with the ideal standard crater volume which can be calculated by theoretical standard blast design method. As a result, the ratio of burden and hole diameter which should achieve the standard crater in the cut-hole blasting were suggested.

A Study on OBC Integrated 1.5kW LDC Converter for Electric Vehicle. (전기자동차용 OBC 일체형 1.5kW급 LDC 컨버터에 대한 연구)

  • Kim, Hyung-Sik;Jeon, Joon-Hyeok;Kim, Hee-Jun;Ahn, Joon-Seon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.4
    • /
    • pp.456-465
    • /
    • 2019
  • PHEV(Plug in Hybrid Electric Vehicle) and BEV(Battery Electric Vehicle) equip high voltage batteries to drive motor and vehicle electric system. Those vehicle require OBC(On-Board Charger) for charging batteries and LDC(Low DC/DC Converter) for converting from high voltage to low voltage. Since the charger and the converter actually separate each other in electrical vehicles, there is a margin to reduce the vehicle weight and area of installation by integration two systems. This paper studies a 1.5kW LDC converter that can be integrated into an OBC using an isolated current-fed converter by simplifying the design of LDC transformers. The proposed LDC can control the final output voltage of the LDC by using a fixed arbitrary output voltage of the bidirectional buck-boost converter, so that Compared to the existing OBC-LDC integrated system, it has the advantage of simplifying the transformer design considering the battery voltage range, converter duty ratio and OBC output turn ratio. Prototype of the proposed LDC was made to confirm normal operation at 200V ~ 400V input voltage and maximum efficiency of 91.885% was achieved at rated load condition. In addition, the OBC-LDC integrated system achieved a volume of about 6.51L and reduced the space by 15.6% compared to the existing independent system.

Comparative assessment of urban stormwater low impact strategies equipped with pre-treatment zones (침강지 시설이 조성된 LID 시설의 환경적 영향평가)

  • Yano, K.A.V.;Reyes, N.J.D.G.;Jeon, M.S.;Kim, L.H.
    • Journal of Wetlands Research
    • /
    • v.21 no.2
    • /
    • pp.181-190
    • /
    • 2019
  • Recently, Low impact development techniques, a form of nature-based solutions (NBS), were seen cost-efficient alternatives that can be utilized as alternatives for conventional stormwater management practices. This study evaluated the effectiveness of an infiltration trench (IT) and a small constructed wetland (SCW) in treating urban stormwater runoff. Long-term monitoring data were observed to assess the seasonal performance and cite the advantages and disadvantages of utilizing the facilities. Analyses revealed that the IT has reduced performance during the summer season due to higher runoff volumes that exceeded the facility's storage volume capacity and caused the facility to overflow. On the other hand, the pollutant removal efficiency of the SCW was impacted by the winter season as a result of dormant biological activities. Sediment data also indicated that fine and medium sand particles mostly constituted the trapped sediments in the pretreatment and media zones. Sediments in SCW exhibited a lower COD and TN load due to the phytoremediation and microbiological degradation capabilities of the system. This study presented brief comparison LID facilities equipped with pre-treatment zones. The identified factors that can potentially affect the performance of the systems were also beneficial in establishing metrics on the utilization of similar types of nature-based stormwater management practices.