DOI QR코드

DOI QR Code

Assessment of Climate Change Impact on Imha-Dam Watershed Hydrologic Cycle under RCP Scenarios

RCP 기후변화 시나리오에 따른 임하댐 유역의 미래 수문순환 전망

  • Jang, Sun-Sook (Department of Civil & Environmental System Engineering, Konkuk University) ;
  • Ahn, So-Ra (Department of Civil & Environmental System Engineering, Konkuk University) ;
  • Joh, Hyung-Kyung (Department of Civil & Environmental System Engineering, Konkuk University) ;
  • Kim, Seong-Joon (Department of Civil & Environmental System Engineering, Konkuk University)
  • 장선숙 (건국대학교 사회환경시스템공학과) ;
  • 안소라 (건국대학교 사회환경시스템공학과) ;
  • 조형경 (건국대학교 사회환경시스템공학과) ;
  • 김성준 (건국대학교 사회환경시스템공학과)
  • Received : 2015.01.08
  • Accepted : 2015.03.23
  • Published : 2015.03.31

Abstract

This study was to evaluate the RCP climate change impact on hydrological components in the Imha-Dam watershed using SWAT(Soil and Water Assessment Tool) Model. The model was calibrated for six year(2002~2007) and validated for six year(2008~2013) using daily observed streamflow data at three watershed stations. The overall simulation results for the total released volume at this point appear reasonable by showing that coefficient of determination($R^2$) were 0.70~0.85 and Nash-Sutcliffe model efficiency(NSE) were 0.67-0.82 for streamflow, respectively. For future hydrologic evaluation, the HadGEM3-RA climate data by scenarios of Representative Concentration Pathway(RCP) 4.5 and 8.5 of the Korea Meteorological Administration were adopted. The biased future data were corrected using 34 years(1980~2013, baseline period) of weather data. Precipitation and temperature showed increase of 10.8% and 4.9%, respectively based on the baseline data. The impacts of future climate change on the evapotranspiration, soil moisture, surface runoff, lateral flow, return flow and streamflow showed changes of +11.2%, +1.9%, +10.0%, +12.1%, +18.2%, and +11.2%, respectively.

본 연구는 SWAT(Soil and Water Assessment Tool) 모형을 이용하여 임하댐 유역($1,355.5km^2$)을 대상으로 RCP(AR5) 기후변화 시나리오에 따른 미래 수문순환 영향을 평가하였다. 3지점의 실측된 유출량을 활용하여 모형의 보정(2002~2007년) 및 검증(2008~2013년)을 실시하였다. 검 보정 결과 결정계수($R^2$)는 0.70~0.85로, Nash-Sutcliffe 모형 효율(NSE)은 0.67~0.82로 분석되어 신뢰성 있는 유출량 모의 결과를 나타내었다. 기후변화 시나리오는 기상청에서 제공하는 HadGEM3-RA 모형의 RCP 4.5 및 8.5 시나리오를 수집하여, 과거 34년(1980-2013, baseline period)의 기상자료를 기준으로 편이보정(Bias Correction)하여 SWAT모형에 적용하였다. 기후변화 분석 결과 강수량과 평균기온이 10.8%, $4.9^{\circ}C$ 증가하였으며, 강수량과 기온의 증가로 증발산 11.2%, 토양수분 1.9%, 지표유출 10.0%, 중간유출 12.1%, 회귀유출 18.2%이 각각 증가함에 따라 총 하천유출량이 11.2% 증가하였다.

Keywords

References

  1. Ahn, J.H., C.S. Yoo and Y.N. Yoon. 2001. An analysis of hydrologic changes in Daechung dam basin using GCM simulation results due to global warming. Journal of the Korea Water Resources Association 34(4):335-345 (안재현, 유철상, 운용남. 2001. GCM 결과를 이용한 지구온난화에 따른 대청댐 유역의 수문환경 변화 분석. 한국수자원학회지 34(4)335-345).
  2. Ahn, S.R., G.A. Park, C.H. Jang and S.J. Kim. 2013. Assessment of climate change impact on evapotranspiration and soil moisture in a mixed forest catchment using spatially calibrated SWAT model. Journal of the Korea Water Resources Association 16(6): 569-583 (안소라, 박근애, 장철희, 김성준. 2013. SWAT 모형을 이용한 미래 기후변화가 설마천 혼효림 유역의 증발산과 토양수분에 미치는 영향 평가. 한국수자원학회지 16(6):569-583).
  3. Alcamo, J., P. Doll, F. Kaspar and S. Siebert. 1997. Global change and global scenarios of water use and availability: an application of Water GAP 1.0. Report A9701. Kassel, Germany: University of Kassel, Center for Environmental Systems Research.
  4. Andersen, H.E., B. Kronvang, S.E. Larsen, C.C. Hoffmann, T.S. Jensen and E.K. Rasmussen. 2006. Climate-change impacts on hydrology and nutrients in a Danish lowland river basin. Science of the Total Environment 365:223-237. https://doi.org/10.1016/j.scitotenv.2006.02.036
  5. Arnold, J.G., J.R. Williams, R. Srinivasan and K.W. King. 1996. SWAT manual, USDA. Agricultural Research Service and Blackland Research Center, Texas.
  6. Carter, T.R., M. Hulme and M. Lal. 1999. IPCC-TGCIA guidelines on the use of scenario data for climate change impact and adaptation assessment. version 1, IPCC, Task Group on Scenarios for Impact Assessment.
  7. Chen, J., J. Xia, C. Zhao, S. Zhang, G. Fu, and L. Ning. 2014. The mechanism and scenarios of how mean annual runoff varies with climate change in Asian monsoon areas. Journal of Hydrology 517:595-606. https://doi.org/10.1016/j.jhydrol.2014.05.075
  8. IPCC. 2013. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  9. Jeong, H.G., S.J. Kim and R. Ha. 2013. Assessment of climate change impact on storage behavior of Chungju and the regulation dams using SWAT model. Journal of the Korea Water Resources Association 46(12):1235-1247 (정현교, 김성준, 하림. 2013. SWAT을 이용한 기후 변화가 충주댐 및 조정지댐 저수량에 미치는 영향 평가. 한국수자원학회지 46(12):1235-1247). https://doi.org/10.3741/JKWRA.2013.46.12.1235
  10. Joh, H.K., S.B. Kim, H. Cheong, H.J. Shin and S.J. Kim. 2011. Projection of future snowfall by using climate change scenarios. Journal of the Korean Association of Geographic Information Studies 14(3):188-202 (조형경, 김샛별, 정혁, 신형진, 김성준. 2011. 기후변화 시나리오를 이용한 미래의 강설량 예측. 한국지리정보학회지 14(3):188-202). https://doi.org/10.11108/kagis.2011.14.3.188
  11. Kim, S.J., G.A. Park, Y.G. Lee and S.R. Ahn. 2014. Development of a mesoscale distributed continuous hydrologic model and application for climate change impact assessment to Han river basin. Journal of the Korean Association of Geographic Information Studies 17(3):160-174 (김성준, 박근애, 이용관, 안소라. 2014. 분포형 광역 수문모델 개발 및 한강유역 미래 기후변화 수문영향평가. 한국지리정보학회지 17(3):160-174). https://doi.org/10.11108/kagis.2014.17.3.160
  12. Lee, G.S., J.Y. Kim, S.R. Ahn and J.M. Sim. 2010. Analysis of suspended solid of Andong and Imha basin according to the climate change. Journal of the Korean Association of Geographic Information Studies 13(1):1-15 (이근상, 김정열, 안소라, 심정민. 2010. 기후변화에 따른 안동.임하호 유역의 부유사량 분석. 한국지리정보학회지 13(1):1-15).
  13. MLTM. 2006. Water vision 2020. Ministry of Land, Transportation and Maritime Affairs (국토해양부. 2006. 수자원장기종합계획 2006-2020).
  14. Neitsch, S.L., J.G. Arnold, J.R. Kiniry and J.R. Williams. 2001. Soil and Water Assessment Tool. Theoretical Documentation.
  15. NIMR, 2011. Climate change scenario report 2011 to respond to the IPCC 5th assessment report. National Institute of Meteorological Research (국립기상연구소. 2011. IPCC 5차 평가보고서 대응을 위한 기후변화시나리오 보고서. 국립기상연구소).
  16. Park, J.H. and Y.O. Kim. 2013. Coping with climate change through coordinated operations of the Andong & Imha dams. Journal of the Korea Water Resources Association 46(12):1141-1155 (박준형, 김영오. 2013. 안동-임하댐 연계운영을 통한 미래 기후변화 대응. 한국수자원학회지 46(12):1141-1155). https://doi.org/10.3741/JKWRA.2013.46.12.1141
  17. Park, J.Y., H. Jung, C.H. Jang and S.J. Kim. 2014. Assessing climate change impact on hydrological components of Yongdam dam watershed using RCP emission scenarios and SWAT model. Journal of the Korean Society of Agricultural Engineers 56(3):19-29 (박종윤, 정혁, 장철희, 김성준. 2014. RCP 배출 시나리오와 SWAT 모형을 이용한 기후 변화가 용담댐 유역의 수문요소에 미치는 영향 평가. 한국농공학회지 56(3):19-29). https://doi.org/10.5389/KSAE.2014.56.3.019
  18. Park, M.J. H.J. Shin, G.A. Park and S.J. Kim. 2010. Assessment of future hydrological behavior of Soyanggang dam watershed using SWAT. Journal of Korea Society of Civil Engineers 30(4B):337-346 (박민지, 신형진, 박근애, 김성준. 2010. SWAT 모형을 이용한 소양강댐 유역의 미래 수자원 영향 평가. 대한토목학회지 30(4B):337-346).
  19. Saxton, K.E., W.J. Rawls, J.S. Romberger and R.I. Papendick, 1986. Estimating generalized soil-water characteristics from texture. Soil Science of America Journal 50(4):1031-1036. https://doi.org/10.2136/sssaj1986.03615995005000040039x
  20. Soil Survey Staff. 1996. National Soil Survey Handbook. Title 430-VI, USDA Natural Resources Conservation Service, U.S. Government Printing Office, Washington, DC.
  21. Su, B., X. Zeng, J. Zhai, Y. Wang and X. Li. 2014. Projected precipitation and streamflow under SRES and RCP emission scenarios in the Songhuajiang River basin, China. Quaternary International XXX(2014) :1-11.

Cited by

  1. Assessment of Runoff and Water temperature variations under RCP Climate Change Scenario in Yongdam dam watershed, South Korea vol.32, pp.2, 2016, https://doi.org/10.15681/KSWE.2016.32.2.173
  2. 비정상성 Bayesian Beta 분포를 이용한 시 단위 극치자료 추정기법 개발 vol.33, pp.3, 2017, https://doi.org/10.15681/kswe.2017.33.3.256
  3. SWAT모형을 이용한 RCP 기후변화 시나리오에 따른 고랭지농업유역의 수문 및 수질 평가 vol.59, pp.3, 2015, https://doi.org/10.5389/ksae.2017.59.3.041
  4. APEX-Paddy 모델을 이용한 기후변화에 따른 논벼 생산량 및 증발산량 변화 예측 vol.59, pp.4, 2015, https://doi.org/10.5389/ksae.2017.59.4.027
  5. SWAT 모형을 이용한 기후변화에 따른 남강댐 유입량 추정 vol.59, pp.6, 2015, https://doi.org/10.5389/ksae.2017.59.6.009
  6. Selecting Climate Models to Determine Future Extreme Rainfall Quantiles vol.19, pp.1, 2015, https://doi.org/10.9798/kosham.2019.19.1.55
  7. 무유출의 고려를 통한 간헐하천 유역에 확률기반의 격자형 수문모형의 구축 vol.53, pp.6, 2020, https://doi.org/10.3741/jkwra.2020.53.6.437