DOI QR코드

DOI QR Code

Study on the Piezoelectric Energy Harvesting Technology for the Energy Conversion of Vibration in Automobiles

자동차 진동 에너지 변환을 위한 압전 에너지 하베스팅에 관한 연구

  • Lee, Hyeon Yeong (School of Materials Engineering, Yeungnam University) ;
  • Kim, Kwangwon (School of Materials Engineering, Yeungnam University) ;
  • Ye, Jiwon (School of Materials Engineering, Yeungnam University) ;
  • Woo, Suhyeon (School of Materials Engineering, Yeungnam University) ;
  • Lee, Geon (School of Materials Engineering, Yeungnam University) ;
  • Lee, Seungah (School of Materials Engineering, Yeungnam University) ;
  • Jeong, Seong Rok (School of Materials Engineering, Yeungnam University) ;
  • Jeong, Seon Hye (School of Materials Engineering, Yeungnam University) ;
  • Kim, Ho Seong (School of Materials Engineering, Yeungnam University) ;
  • Nam, Ga Hyeon (School of Materials Engineering, Yeungnam University) ;
  • Jo, Yun Yeong (School of Materials Engineering, Yeungnam University) ;
  • Choi, Han Seung (School of Materials Engineering, Yeungnam University) ;
  • Ryu, Jungho (School of Materials Engineering, Yeungnam University)
  • 이현영 (영남대학교 신소재공학부) ;
  • 김광원 (영남대학교 신소재공학부) ;
  • 예지원 (영남대학교 신소재공학부) ;
  • 우수현 (영남대학교 신소재공학부) ;
  • 이건 (영남대학교 신소재공학부) ;
  • 이승아 (영남대학교 신소재공학부) ;
  • 정성록 (영남대학교 신소재공학부) ;
  • 정선혜 (영남대학교 신소재공학부) ;
  • 김호성 (영남대학교 신소재공학부) ;
  • 남가현 (영남대학교 신소재공학부) ;
  • 조윤영 (영남대학교 신소재공학부) ;
  • 최한승 (영남대학교 신소재공학부) ;
  • 류정호 (영남대학교 신소재공학부)
  • Received : 2021.09.03
  • Accepted : 2021.09.16
  • Published : 2021.11.01

Abstract

Energy Harvesting is a technology that can convert wasted energy such as vibration, heat, light, electromagnetic energy, etc. into usable electrical energy. Among them, vibration-based piezoelectric energy harvesting (PEH) has high energy conversion efficiency with a small volume; thus, it is expected to be used in various autonomous powering devices, such as implantable medical devices, wearable devices, and energy harvesting from road or automobiles. In this study, wasted vibration energy in an automobile is converted into electrical energy by high-power piezoelectric materials, and the generated electrical energy is found to be an auxiliary power source for the operation of wireless sensor nodes, LEDs, etc. inside an automobile. In order to properly install the PEH in an automobile, vibration characteristics includes frequency and amplitude at several positions in the automobile is monitored initially and the cantilever structured PEH was designed accordingly. The harvesting properties of fabricated PEH is characterized and installed into the engine part of the automobile, where the vibration amplitude is stable and strong. The feasibility of PEH is confirmed by operating electric components (LEDs) that can be used in practice.

Keywords

Acknowledgement

본 연구는 국가과학기술연구회 창의성 융합사업(CAP-17-04-KRISS)의 지원을 받아 수행되었습니다.

References

  1. S. Y. Lee, Electrical & Electronic Materials, 31, 17 (2018).
  2. G. T. Hwang, J. Ryu, and W. H. Yoon, J. Korean Inst. Electr. Electron. Mater. Eng., 34, 271 (2021). [DOI: https://doi.org/10.4313/JKEM.2021.34.5.271]
  3. Y. H. Jeong, Trans. KIEE, 63, 18 (2014). https://doi.org/10.5370/KIEE.2014.63.1.018
  4. G. B. Yeon, The Magazine of the IEEK, 6, 18 (2013).
  5. X. Gao, J. Wu, Y. Yu, and S. Dong, Appl. Phys. Lett., 111, 212904 (2017). [DOI: https:/doi.org/10.1063/1.5001803]
  6. B. C. Lee and G. S. Chung, J. Sens. Sci. Technol., 23, 202 (2014). [DOI: https://doi.org/10.5369/JSST.2014.23.3.202]
  7. D. Maurya, P. Kumar, S. Khaleghian, R. Sriramdas, M. G. Kang, R. A. Kishore, V. Kumar, H. C. Song, J. M. Park, S. Taheri, and S. Priya, Appl. Energy, 232, 312 (2018). [DOI: https://doi.org/10.1016/j.apenergy.2018.09.183]
  8. V. Annapureddy, S. M. Na, G. T. Hwang, M. G. Kang, R. Sriramdas, H. Palneedi, W. H. Yoon, B. D. Hahn, J. W. Kim, C. W. Ahn, D. S. Park, J. J. Choi, D. Y. Jeong, A. B. Flatau. M. Peddigari, S. Priya, K. H. Kim, and J. Ryu, Energy Environ. Sci., 11, 818 (2018). [DOI: https://doi.org/10.1039/C7EE03429F]
  9. N. Y. Lee, D. C. Kim, D. H. Yeo, J. S. Lee, S. O. Yoon, H. S. Shin, and J. H. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 33, 355 (2020). [DOI: https://doi.org/10.4313/JKEM.2020.33.5.355]
  10. JEITA EM-4501A, Electrical Test Methods for Piezoelectric Ceramic Vibrators, Revised in October 2015.
  11. W. S. Kang, G. J. Lee, and W. Jo, J. Korean Inst. Electr. Electron. Mater. Eng., 34, 301 (2021). [DOI: https://doi.org/10.4313/JKEM.2021.34.5.301]
  12. J. C. Moon and J. H. Jeong, J. Korean Soc. Power Syst. Eng., 23, 32 (2019). [DOI: https://doi.org/10.9726/kspse.2019.23.6.032]
  13. S. W. Kim, Y. J. Jeong, and H. C. Lee, J. Korean Powder Metall. Inst., 25, 487 (2018). [DOI: https://doi.org/10.4150/KPMI.2018.25.6.487]
  14. H. Song, D. R. Patil, W. H. Yoon, K. H. Kim, C. Choi, J. H. Kim, G. T. Hwang, D. Y. Jeong, and J. Ryu, Energy Environ. Sci., 13, 4238 (2020). [DOI: https://doi.org/10.1039/D0EE01574A]
  15. R. Sriramdas, M. G. Kang, M. Meng, M. Kiani, J. Ryu, M. Sanghadasa, and S. Priya, Adv. Energy Mater., 10, 1903689 (2020). [DOI: https://doi.org/10.1002/aenm.201903689]
  16. G. Y. Kim, M. Peddigari, K. W. Lim, G. T. Hwang, W. H. Yoon, H. S. Choi, J. W. Lee, and J. Ryu, Electron. Mater. Lett., 15, 61 (2019). [DOI: https://doi.org/10.1007/s13391-018-00103-w]