DOI QR코드

DOI QR Code

Time-dependent characteristics of viscous fluid for rock grouting

암반 그라우팅을 위한 점성유체의 시간의존 특성 분석

  • Lee, Jong-Won (Civil & Environmental Engineering, Pusan National University) ;
  • Kim, Ji-Yeong (Civil & Environmental Engineering, Pusan National University) ;
  • Weon, Jo-Hyun (Civil & Environmental Engineering, Pusan National University) ;
  • Oh, Tae-Min (Civil & Environmental Engineering, Pusan National University)
  • 이종원 (부산대학교 사회환경시스템공학과) ;
  • 김지영 (부산대학교 사회환경시스템공학과) ;
  • 원조현 (부산대학교 사회환경시스템공학과) ;
  • 오태민 (부산대학교 사회환경시스템공학과)
  • Received : 2022.09.06
  • Accepted : 2022.10.18
  • Published : 2022.11.30

Abstract

Rock grouting is important to improve the waterproof efficiency and mechanical strength of rock medium with joint for utilizing the underground rock space such as tunnel. The grouting materials typically has been used the cement materials, which represent Bingham fluid model. This model can express the relationship of viscosity and yield strength. In addition, it is dependent with elapsed time. The grouting injection performance can be deteriorated with an increase of viscosity and yield strength in the grouting process if the time dependence is ignored. Therefore, in this study, the characteristics of viscosity and yield strength were investigated according to water-cement ratio and time dependence in the laboratory test. Numerical simulation was carried out to investigate the grouting performance according to the time dependence of characteristics in terms of the viscosity model. Given the results, the grouting injected distance and cumulative grout volume were significantly decreased when the time dependence of grouting material was considered. This study, considering the characteristics according to the time dependence of viscosity and yield strength, will be meaningful to the design of grouting injection in field applications.

터널과 같은 지하 공간을 활용하는 경우, 암반 그라우팅 공법을 통하여 암반의 차수 및 강도특성을 향상시켜 지하공간을 안전하게 활용하는 것이 중요하다. 암반 절리 내 그라우팅을 위한 주입재는 주로 Bingham 유체에 해당하는 시멘트계열의 재료를 활용하는 것이 일반적이다. Bingham 유체 모델은 점성도와 항복강도의 특성으로 표현되며, 이러한 특성은 시간 경과에 따라 달라지게 된다. 만약 시멘트 주입재료의 시간 경과에 따른 특성을 고려하지 않고 그라우팅 주입설계를 실시하는 경우, 그라우팅 과정에서 주입재의 점성도 및 항복강도의 증가에 따라 주입성능이 저하될 수 있다. 본 연구에서는 그라우팅 주입재료의 물-시멘트 배합비율, 시간 경과에 따른 점성특성(점성도, 항복강도) 측정 및 분석 실내실험을 실시하였다. 실내실험을 통하여 파악한 점성모델을 이용하여 그라우팅 주입재의 시간의존 특성에 따른 그라우팅 주입 시뮬레이션을 실시하였다. 해석결과, 시간의존 특성을 고려하는 경우 단일 점성특성을 적용한 해석에 비하여 그라우팅 주입거리 및 누적 주입량이 감소하여 주입성능이 큰 폭으로 감소하는 결과를 보였다. 본 연구를 통하여 파악된 그라우팅 주입재의 시간 경과에 따른 점성모델 및 해석결과는 향후 그라우팅 주입 현장에서 의미있게 활용될 수 있을 것으로 예상된다.

Keywords

Acknowledgement

이 논문은 2022년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 초연구사업(No. NRF-2022R1I1A3065299) 및 2021~2022학년도 부산대학교 BK21 FOUR 대학원혁신지원사업의 지원을 받아 수행된 연구임.

References

  1. Barton, N. (1978), "Suggested methods for the quantitative description of discontinuities in rock masses", International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, Vol. 15, No. 6, pp. 319-368. https://doi.org/10.1016/0148-9062(78)91472-9
  2. Hakansson, U., Hassler, L., Stille, H. (1992), "Rheological properties of microfine cement grouts", Tunnelling and Underground Space Technology, Vol. 7, No. 4, pp. 453-458. https://doi.org/10.1016/0886-7798(92)90076-T
  3. Jeoung, J.H., Hwang, S.P., Lee, J.H., Lee, T.H. (2016), "The study on evaluation of injection performance in micro crack depending on viscosity of grouting material", Journal of the Korean Society of Hazard Mitigation, Vol. 16, No. 5, pp. 239-245. https://doi.org/10.9798/KOSHAM.2016.16.5.239
  4. Kim, J., Lee, E.K. (2022), "A fundamental study on the criteria of basic parameters for planning rock grouting", Journal of the Korean Geotechnical Society, Vol. 38, No. 2, pp. 15-27. https://doi.org/10.7843/KGS.2022.38.2.15
  5. Kim, N.Y., Park, G.T., Baek, S.C., Lee, K.H., Choi, J.W., Her, Y. (2017), "Analysis of displacement behavior in fractured fault and groundwater flow under tunnel excavation", Journal of Korean Tunnelling and Underground Space Association, Vol. 19, No. 1, pp. 71-82. https://doi.org/10.9711/KTAJ.2017.19.1.071
  6. Kobayashi, S., Stille, H. (2007), Design for rock grouting based on analysis of grout penetration, Verification using Aspo HRL data and parameter analysis, No. SKB-R--07-13, Swedish Nuclear Fuel and Waste Management Co., pp. 23-34.
  7. Lee, H., Oh, T.M., Park, E.S., Lee, J.W., Kim, H.M. (2017), "Factors affecting waterproof efficiency of grouting in single rock fracture", Geomechanics and Engineering, Vol. 12, No. 5, pp. 771-783. https://doi.org/10.12989/gae.2017.12.5.771
  8. Lee, J.W., Weon, J.H., Choi, H.Y., Oh, T.M. (2021), "Analysis of viscosity and bleeding characteristics of grouting materials according to the proportion of bentonite", LHI Journal of Land, Housing, and Urban Affairs, Vol. 12, No. 4, pp. 127-137. https://doi.org/10.5804/LHIJ.2021.12.4.127
  9. Liu, X., Hu, C., Liu, Q., He, J. (2021), "Grout penetration process simulation and grouting parameters analysis in fractured rock mass using numerical manifold method", Engineering Analysis with Boundary Elements, Vol. 123, pp. 93-106. https://doi.org/10.1016/j.enganabound.2020.11.008
  10. Liu, Y.H., Yang, P., Ku, T., Gao, S.W. (2020), "Effect of different nanoparticles on the grouting performance of cement-based grouts in dynamic water condition", Construction and Building Materials, Vol. 248, No. 118663, pp. 1-9.
  11. Meng, F., Wong, L.N.Y., Zhou, H., Yu, J., Cheng, G. (2019), "Shear rate effects on the post-peak shear behaviour and acoustic emission characteristics of artificially split granite joints", Rock Mechanics and Rock Engineering, Vol. 52, No. 7, pp. 2155-2174. https://doi.org/10.1007/s00603-018-1722-8
  12. Ministry of Land, Infrastructure and Transport (2020), Yearbook of road bridge and tunnel statistics, pp. 13-16.
  13. Mohammed, M.H., Pusch, R., Knutsson, S. (2015), "Study of cement-grout penetration into fractures under static and oscillatory conditions", Tunnelling and Underground Space Technology, Vol. 45, pp. 10-19. https://doi.org/10.1016/j.tust.2014.08.003
  14. Moon, J.S. (2013), "Groundwater inflow rate estimation considering excavation-induced permeability reduction in the vicinity of a tunnel", Journal of Korean Tunnelling and Underground Space Association, Vol. 15, No. 3, pp. 333-344. https://doi.org/10.9711/KTAJ.2013.15.3.333
  15. Mu, W., Wang, D., Li, L., Yang, T., Feng, Q., Wang, S., Xiao, F. (2021), "Cement flow in interaction rock fractures and its corresponding new construction process in slope engineering", Construction and Building Materials, Vol. 303, No. 11.
  16. Nguyen, V.H., Remond, S., Gallias, J.L. (2011), "Influence of cement grouts composition on the rheological behaviour", Cement and Concrete Research, Vol. 41, No. 3, pp. 292-300. https://doi.org/10.1016/j.cemconres.2010.11.015
  17. Pantazopoulos, I.A., Markou, I.N., Christodoulou, D.N., Droudakis, A.I., Atmatzidis, D.K., Antiohos, S.K., Chaniotakis, E. (2012), "Development of microfine cement grouts by pulverizing ordinary cements", Cement and Concrete Composites, Vol. 34, No. 5, pp. 593-603. https://doi.org/10.1016/j.cemconcomp.2012.01.009
  18. Panthi, K.K., Nilsen, B. (2005), "Significance of grouting for controlling leakage in water tunnels: A case from Nepal", Proceedings of the ITA-AITES 2005 World Tunnelling Congress and 31st ITA General Assembly, Istanbul, Turkey, pp. 931-937.
  19. Rafi, J.Y., Stille, H. (2014), "Control of rock jacking considering spread of grout and grouting pressure", Tunnelling and Underground Space Technology, Vol. 40, pp. 1-15. https://doi.org/10.1016/j.tust.2013.09.005
  20. Saeidi, O., Ramezanzadeh, A., Sereshki, F., Jalali, S.M.E. (2013), "Numerical modeling of the effects of joint hydraulic aperture, orientation and spacing on rock grouting using UDEC: A case study of Bakhtiary dam of Iran", Journal of Mining and Environment, Vol. 4, No. 1, pp. 15-26.
  21. Sagong, M., Lee, J.S., Park, J., Cho, C. (2018), "An experimental study on the viscosity features of sealant (bentonite-cement slurry) in umbrella arch method", Journal of Korean Tunnelling and Underground Space Association, Vol. 20, No. 5, pp. 773-786. https://doi.org/10.9711/KTAJ.2018.20.5.773
  22. Stille, B., Gustafson, G. (2010), "A review of the Namntall tunnel project with regard to grouting performance", Tunnelling and Underground Space Technology, Vol. 25, No. 4, pp. 346-356. https://doi.org/10.1016/j.tust.2010.01.009
  23. Struble, L.J., Lei, W.G. (1995), "Rheological changes associated with setting of cement paste", Advanced Cement Based Materials, Vol. 2, No. 6, pp. 224-230. https://doi.org/10.1016/1065-7355(95)90041-1
  24. You, K.H., Jie, H.K., Seo, K.W., Kim, S.J., You, D.W. (2012), "A study on the correlation between the rock mass permeability before and after grouting & injection volume and the parameters of Q system in a jointed rock mass tunnel", Journal of Korean Tunnelling and Underground Space Association, Vol. 14, No. 6, pp. 617-635. https://doi.org/10.9711/KTAJ.2012.14.6.617
  25. Zareidarmiyan, A., Salarirad, H., Vilarrasa, V., Kim, K.I., Lee, J., Min, K.B. (2020), "Comparison of numerical codes for coupled thermo-hydro-mechanical simulations of fractured media", Journal of Rock Mechanics and Geotechnical Engineering, Vol. 12, No. 4, pp. 850-865. https://doi.org/10.1016/j.jrmge.2019.12.016