• Title/Summary/Keyword: Volatile Memory

Search Result 302, Processing Time 0.022 seconds

Study on the Silicon Nano-needle Structure for Nano floating Gate Memory Application (나노 부유 게이트 메모리 소자 응용을 위한 실리콘 나노-바늘 구조에 관한 연구)

  • Jung, Sung-Wook;Yoo, Jin-Su;Kim, Young-Kuk;Kim, Kyung-Hae;Yi, Jun-Sin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.12
    • /
    • pp.1069-1074
    • /
    • 2005
  • In this work, nano-needle structures ate formed to solve problem, related to low density of quantum dots for nano floating gate memory. Such structures ate fabricated and electrical properties' of MIS devices fabricated on the nano-structures are studied. Nano floating gate memory based on quantum dot technologies Is a promising candidate for future non-volatile memory devices. Nano-structure is fabricated by reactive ion etching using $SF_6$ and $O_2$ gases in parallel RF plasma reactor. Surface morphology was investigated after etching using scanning electron microscopy Uniform and packed deep nano-needle structure is established under optimized condition. Photoluminescence and capacitance-voltage characteristics were measured in $Al/SiO_2/Si$ with nano-needle structure of silicon. we have demonstrated that the nano-needle structure can be applicable to non-volatile memory device with increased charge storage capacity over planar structures.

Effect of ZrO2 Buffer Layers for Pt/Bi3.25La0.75Ti3O12/ZrO2/Si (MFIS)-FET Structures (Pt/Bi3.25La0.75Ti3O12/ZrO2/Si (MFIS)-FET 구조를 위한 ZrO2 Buffer Layer의 영향)

  • Kim, Kyoung-Tae;Kim, Chang-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.5
    • /
    • pp.439-444
    • /
    • 2005
  • We investigated the structural and electrical properties of BLT films grown on Si covered with $ZrO_{2}$ buffer layer. The BLT thin film and $ZrO_{2}$ buffer layer were fabricated using a metalorganic decomposition method. The electrical properties of the MFIS structure were investigated by varying thickness of the $ZrO_{2}$ layer. AES and TEM show no interdiffusion and reaction that suppressed using the $ZrO_{2}$ film as a buffer layer The width of the memory window in the C-V curves for the MFIS structure decreased with increasing thickness of the $ZrO_{2}$ layer. It is considered that the memory window width of MFIS is not affected by remanent polarization. Leakage current density decreased by about four orders of magnitude after using $ZrO_{2}$ buffer layer. The results show that the $ZrO_{2}$ buffer layers are prospective candidates for applications in MFIS-FET memory devices.

Electrical Characteristics of Staggered Capacitor ($Si_3N_4$ / HfAlO) for High Performance of Non-volatile Memory

  • Lee, Se-Won;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.358-358
    • /
    • 2010
  • To improve the programming/erasing speed and leakage current of multiple dielectric stack tunnel barrier engineering (TBE) Non-volatile memory, We propose a new concept called staggered structure of TBE memory. In this study, We fabricated staggered structure capacitor on $Si_3N_4$ stacked HfAlO and measured C-V curve that can observe tunneling characteristic of this device as various annealing temperature compared with that of single layer $SiO_2$ capacitor.

  • PDF

Dynamic Wear Leveling Technique using Block Sequence Number in Non-volatile Memory (비휘발성 메모리 환경에서 블록 생성 번호를 활용한 동적 마모도 평준화 기법)

  • Hwang, Sang-Ho;Kwak, Jong Wook
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.01a
    • /
    • pp.5-7
    • /
    • 2016
  • 본 논문에서는 블록 생성 번호를 활용한 동적 마모도 평준화 기법을 제안한다. 지금까지 제안된 동적 마모도 평준화 기법들은 콜드 블록을 판별하기 위해 경과 시간을 사용하고 있다. 하지만 저장장치의 데이터 접근은 일정한 시간 간격으로 이루어지는 것이 아니기 때문에 이와 같은 경과 시간을 사용하는 방식은 데이터에 대한 블록 접근 정보가 왜곡될 수 있는 단점이 있다. 이러한 단점을 해결하기 위해, 본 논문에서 제안하는 기법은 블록을 할당할 때 블록 순차 번호를 테이블에 저장하고 이를 이용하여 블록의 접근 빈도를 판별한다. 실험에서 제한하는 기법은 기존의 CB, CAT 기법과 비교하여 최대 11% 수명이 향상됨을 확인하였다.

  • PDF

ONO Ruptures Caused by ONO Implantation in a SONOS Non-Volatile Memory Device

  • Kim, Sang-Yong;Kim, Il-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.1
    • /
    • pp.16-19
    • /
    • 2011
  • The oxide-nitride-oxide (ONO) deposition process was added to the beginning of a 0.25 ${\mu}m$ embedded polysiliconoxide-nitride-oxide-silicon (SONOS) process before all of the logic well implantation processes in order to maintain the characteristics of basic CMOS(complementary metal-oxide semiconductor) logic technology. The system subsequently suffered severe ONO rupture failure. The damage was caused by the ONO implantation and was responsible for the ONO rupture failure in the embedded SONOS process. Furthermore, based on the experimental results as well as an implanted ion's energy loss model, processes primarily producing permanent displacement damages responsible for the ONO rupture failure were investigated for the embedded SONOS process.

Hybrid in-memory storage for cloud infrastructure

  • Kim, Dae Won;Kim, Sun Wook;Oh, Soo Cheol
    • Journal of Internet Computing and Services
    • /
    • v.22 no.5
    • /
    • pp.57-67
    • /
    • 2021
  • Modern cloud computing is rapidly changing from traditional hypervisor-based virtual machines to container-based cloud-native environments. Due to limitations in I/O performance required for both virtual machines and containers, the use of high-speed storage (SSD, NVMe, etc.) is increasing, and in-memory computing using main memory is also emerging. Running a virtual environment on main memory gives better performance compared to other storage arrays. However, RAM used as main memory is expensive and due to its volatile characteristics, data is lost when the system goes down. Therefore, additional work is required to run the virtual environment in main memory. In this paper, we propose a hybrid in-memory storage that combines a block storage such as a high-speed SSD with main memory to safely operate virtual machines and containers on main memory. In addition, the proposed storage showed 6 times faster write speed and 42 times faster read operation compared to regular disks for virtual machines, and showed the average 12% improvement of container's performance tests.

Nanoscale NAND SONOS memory devices including a Seperated double-gate FinFET structure

  • Kim, Hyun-Joo;Kim, Kyeong-Rok;Kwack, Kae-Dal
    • Journal of Applied Reliability
    • /
    • v.10 no.1
    • /
    • pp.65-71
    • /
    • 2010
  • NAND-type SONOS with a separated double-gate FinFET structure (SDF-Fin SONOS) flash memory devices are proposed to reduce the unit cell size of the memory device and increase the memory density in comparison with conventional non volatile memory devices. The proposed memory device consists of a pair of control gates separated along the direction of the Fin width. There are two unique alternative technologies in this study. One is a channel doping method and the other is an oxide thickness variation method, which are used to operate the SDF-Fin SONOS memory device as two-bit. The fabrication processes and the device characteristics are simulated by using technology comuter-adided(TCAD). The simulation results indicate that the charge trap probability depends on the different channel doping concentration and the tunneling oxide thickness. The proposed SDG-Fin SONOS memory devices hold promise for potential application.

Technology of MRAM (Magneto-resistive Random Access Memory) Using MTJ(Magnetic Tunnel Junction) Cell

  • Park, Wanjun;Song, I-Hun;Park, Sangjin;Kim, Teawan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.3
    • /
    • pp.197-204
    • /
    • 2002
  • DRAM, SRAM, and FLASH memory are three major memory devices currently used in most electronic applications. But, they have very distinct attributes, therefore, each memory could be used only for limited applications. MRAM (Magneto-resistive Random Access Memory) is a promising candidate for a universal memory that meets all application needs with non-volatile, fast operational speed, and low power consumption. The simplest architecture of MRAM cell is a series of MTJ (Magnetic Tunnel Junction) as a data storage part and MOS transistor as a data selection part. To be a commercially competitive memory device, scalability is an important factor as well. This paper is testing the actual electrical parameters and the scaling factors to limit MRAM technology in the semiconductor based memory device by an actual integration of MRAM core cell. Electrical tuning of MOS/MTJ, and control of resistance are important factors for data sensing, and control of magnetic switching for data writing.

Active Page Replacement Policy for DRAM & PCM Hybrid Memory System (DRAM&PCM 하이브리드 메모리 시스템을 위한 능동적 페이지 교체 정책)

  • Jung, Bo-Sung;Lee, Jung-Hoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.5
    • /
    • pp.261-268
    • /
    • 2018
  • Phase Change Memory(PCM) with low power consumption and high integration attracts attention as a next generation nonvolatile memory replacing DRAM. However, there is a problem that PCM has long latency and high energy consumption due to the writing operation. The PCM & DRAM hybrid memory structure is a fruitful structure that can overcome the disadvantages of such PCM. However, the page replacement algorithm is important, because these structures use two memory of different characteristics. The purpose of this document is to effectively manage pages that can be referenced in memory, taking into account the characteristics of DRAM and PCM. In order to manage these pages, this paper proposes an page replacement algorithm based on frequently accessed and recently paged. According to our simulation, the proposed algorithm for the DRAM&PCM hybrid can reduce the energy-delay product by around 10%, compared with Clock-DWF and CLOCK-HM.