
Journal of Internet Computing and Services(JICS) 2021. Oct.: 22(5): 57-67 57

Hybrid in-memory storage for cloud
infrastructure

☆

Dae Won Kim1* Sun Wook Kim1 Soo Cheol Oh1

ABSTRACT

Modern cloud computing is rapidly changing from traditional hypervisor-based virtual machines to container-based cloud-native

environments. Due to limitations in I/O performance required for both virtual machines and containers, the use of high-speed storage

(SSD, NVMe, etc.) is increasing, and in-memory computing using main memory is also emerging. Running a virtual environment on main

memory gives better performance compared to other storage arrays. However, RAM used as main memory is expensive and due to

its volatile characteristics, data is lost when the system goes down. Therefore, additional work is required to run the virtual environment

in main memory. In this paper, we propose a hybrid in-memory storage that combines a block storage such as a high-speed SSD with

main memory to safely operate virtual machines and containers on main memory. In addition, the proposed storage showed 6 times

faster write speed and 42 times faster read operation compared to regular disks for virtual machines, and showed the average 12%

improvement of container’s performance tests.

☞ keyword: cloud computing, hybrid in-memory, virtual machine, container

1. Introduction

In-memory computing technology has begun to emerge

again from the requirement for data storage, which is the

biggest bottleneck in processing big data and artificial

intelligence systems[1], [2]. Unlike conventional disk-based

computing, in-memory computing does not store and manage

data on a hard disk, but means loading and using the entire

data in memory [3].

A typical example of in-memory computing is

well-known as a caching system in a memory hierarchy. Due

to the recent development of cloud and edge computing,

various approaches using memory are being implemented,

and as a technology suitable for the current cloud and edge

computing technology, its utilization is rapidly increasing [4].

For example, technologies such as in-memory data grids

1
Electronics and Telecommunications Research Institute. 218
Gajeong-ro, Yuseong-gu, Daejeon, South Korea

* Corresponding author (won22@etri.re.kr)
[Received 25 June 2021, Reviewed 10 July 2021(R2 6 October
2021), Accepted 13 October 2021]
☆ This work was supported by the Institute of Information &

communications Technology Planning & Evaluation(IITP) grant
funded by the Korea government(MSIT) in 2021. [No.
2020-0-00116 » Development of Intelligence Cloud Edge SW
Platform]

☆ A preliminary version of this paper was presented at ICONI
2020.

[5],[6] and in-memory databases [7],[8],[9],[10] are

developing, but most of the in-memory computing services

are currently in their infancy, and some companies also

provide streaming engines, machine learning, distributed

processing, SQL, using in-memroy computing and provides

an platform which is integrated with above functions.

When using disk storage or SSDs in a cloud computing,

if the number of virtual machines or containers per physical

machine increases, the system load is concentrated on the

storage with the virtual disks, and performance deteriorates.

This technology can lead to I/O bottlenecks and performance

degradation in cloud environments. Therefore, virtual

machines or containers used in cloud computing can be

stored in main memory to improve performance [11],[12].

And the host utilizes main memory using a memory-based

temporary filesystem or storage (such as tmpfs) for

containers [13].

However, this technique has disadvantages in that it

cannot store large amount of data due to the limited capacity

of the main memory and it is difficult to overcome the

volatile characteristics of the memory. Of course, in the case

of Optane memory recently announced by Intel [14], it can

be a good example to improve performance and overcome

the shortcomings of memory device. However, there are still

problems in terms of price and capacity for the

commercialization. Therefore, the above-mentioned

http://dx.doi.org/10.7472/jksii.2021.22.5.57

J. Internet Comput. Serv.
ISSN 1598-0170 (Print) / ISSN 2287-1136 (Online)
http://www.jics.or.kr
Copyright ⓒ 2021 KSII

Hybrid in-memory storage for cloud infrastructure

58 2021. 10

limitations and disadvantages should be overcome in order to

implement in-memory computing using the main memory in

spite of the high cost and resource constraints.

In this paper, data storage and operation using main

memory are supported for high-speed data access when a

customer uses a virtual machine or container environment,

and as the user creates data, the memory capacity increases

rapidly to reduce the total memory capacity. Introduce

research and development to solve the problem of excess and

eliminate data loss due to the volatile nature of memory.

In this paper, we propose a hybrid in-memory storage that

integrates main memory (e.g. RAM) and storage (e.g. SSD)

to solve the drawbacks of main memory due to capacity

limitation and volatile characteristics for in-memory

computing. It implements hybrid in-memory storage by

uniting main memory and storage into a single storage view,

and provides high-performance virtual environment and

large-capacity storage for cloud services. We also want to

apply hybrid in-memory storage to our cloud infrastructure to

utilize it for high performance. Section 1 provides an

overview of hybrid in-memory storage and section 2

describes the detailed structure and architecture and

operation. Section 3 describes the virtual machine and

container applications and experimental results, and section 4

provide the further studies. At last, section 5 make conlusion.

2. Overview of Hybrid In-memory

Storage

(Figure 1) Structure of hybrid in-memory storage

Hybrid in-memory storage is a virtual block

storage device that uses a specific unit (in gigabytes) of

memory as a RAM disk and backs up data either

synchronously or asynchronously to a high-performance

non-volatile block device such as an SSD. Figure 1 shows

the overall structure of the hybrid in-memory storage

proposed in this white paper.

The entire system consists of a hybrid in-memory storage

combined with virtual disks, a hybrid in-memory storage

engine, main memory (RAM) and disk storage (SSD).

Virtual machines create and operate virtual images (eg OS

images, disk images, etc.) [15] on hybrid in-memory storage.

And for containers, place the container filesystem on a

virtual disk on hybrid in-memory storage. The hybrid

in-memory storage engine creates a single storage and

combines main memory and disk storage into a single

storage for single view of storage. Hybrid in-memory storage

also provides standard block storage I/O interfaces, allowing

existing virtual machines to operate without modification.

Virtual disk access commands created by virtual machines

or containers are forwarded to hybrid in-memory storage.

Because the hybrid in-memory storage engine combines main

memory and disk storage to create hybrid in-memory storage,

the hybrid in-memory storage engine selects the integrated

main memory and disk storage to process disk access

commands. In addition, hybrid in-memory storage can

significantly reduce the physical virtual desktop image by

using a file system with deduplication for limited memory

operations.

2.1 Architecture of Hybrid In-memory

Storage Engine

Figure 2 shows the architecture of a hybrid in-memory

storage engine. The hybrid in-memory storage engine

consists of a hybrid storage interface module, a hybrid

storage deployment module, a RAM access (main memory)

control module, a RAM-based storage generator, and a disk

access control module.

The hybrid in-memory storage interface module provides

a standard block interface and receives virtual disk access

commands created by virtual machines or containers.

Received commands are forwarded to the hybrid in-memory

Hybrid in-memory storage for cloud infrastructure

한국 인터넷 정보학회 (22권5호) 59

(Figure 3) The operation of hybrid in-memrory storage

storage distribution module. According to the nature of the

command, the hybrid storage distribution module determines

whether to use main memory or disk storage to perform the

command, and sends the command to the RAM access

control module or the disk access control module.

The RAM access control module uses main memory as a

disk to process disk access commands to provide high-speed

(Figure 2) Structure of hybrid in-memory storage

engine

access. The main memory storage creation module performs

the actual read/write operations on main memory that can be

accessed on a address basis with disk access commands sent

in blocks. This allows the data from the virtual disk to be

stored in main memory. The disk storage control module

uses disk storage to process virtual disk access commands.

2.2 Operation of Hybrid In-memory

Storage

Figure 3 shows how hybrid in-memory storage initially

works. When the system starts up, the data in the storage is

restored to the main memory (RAM disk) of the hybrid

in-memory storage.

Even during restoration, the hybrid in-memory storage

engine can continue service without interruption. After

restoration, the hybrid in-memory storage engine performs

read/write (backup) operations. In synchronous mode, all data

transferred to the hybrid in-memory storage engine is

simultaneously stored on RAM disk and SSD. When the save

to both devices is complete, the write to the upper layer is

complete. However, in asynchronous mode, data transferred

to the hybrid in-memory storage engine is only stored on the

RAM disk. A kernel thread inside the hybrid in-memory

Hybrid in-memory storage for cloud infrastructure

60 2021. 10

storage engine stores data from RAM to the SSD in Least

Recent Written (LRW) order.

In figure 3, hybrid in-memory storage supports a storage

expansion to overcome the limitation of memory capacity.

As described above, two types of disk image operation

(in-memory operation and disk operation) are supported and

used by merging them. As shown in the figure 3, when the

memory capacity is full, newly created data is written to

Block device 1-2 without writing to the main memory, and

the data written to Block device 1-2 is read in the disk

operation, not in the main memory. The data written to

Block device 1-1 is operated through the existing in-memory

operation..

(Figure 4) Logical mapping blocks.

Figure 4 shows how to configure hybrid in-memory

storage with RAM and block storage. Hybrid in-memory

storage provides a standard block storage device format to

provide users with a common interface and physically map

the RAM disk area at the front and the disk (SSD) area at

the back of the hybrid in-memory storage logically.

If there is RAM blocks with n block IDs and a disk

(SSD) blocks with m block IDs, then block ID 1 to n of

RAM are mapped to block ID 1 through n of hybrid

in-memory storage to combine the two regions. Block ID 1

to m disks (SSDs) are mapped to hybrid in-memory storage

with block ID n+1 to n+m.

And a storage boundary is established between the hybrid

in-memory storage block ID n and n+1. When a disk access

command is received, the block ID of the command is

checked. If the block ID is less than or equal to the storage

boundary, the command is sent to the RAM access control

module and the command is processed using high-speed

main memory. If the block ID is greater than the storage

boundary, the command is passed to the disk access control

module, where it can be processed in large amounts of disk

storage.

2.3 Read/Write

There are two mode in read/write operation.

In synchronous mode, read operations are independent of

the SSD. Internally, it is only processed from kernel memory

in hybrid in-memory storage. The DMA engine [16] transfers

data from hybrid in-memory storage to user buffers. In other

words, the DMA Engine runs in memory without copying

data. In synchronous mode, write operations are

simultaneously written to main memory and SSD. The

requested write is finally completed only when the DMA

copy has completed and the SSD write has also completed.

All data movement is handled by DMA.

In asynchronous mode, all write operations are performed

in kernel memory, and a completion message is returned

when the write operation is completed in kernel memory.

Data written to the memory is later written to the SSD

according to the delayed write method. Even if the write

speed of the SSD is slow, higher write requests are not

blocked, so the final write speed will be similar to the speed

of the RAM disk.

2.4 De-duplication

Read/Write commands to hybrid in-memory storage are

passed to the hybrid in-memory storage engine, and then

passed to memory through deduplication [17]. In the case of

a virtual machine, memory loss due to the size of the OS

image can be very large. To solve this problem, a

deduplication function is provided. The deduplication

function of hybrid in-memory storage deduplicates the image

of the virtual machine and reduces it so that it can be stored

in main memory. Deduplication of the virtual machine image

is performed whenever a write operation to the virtual

machine image occurs. When a write command to disk

occurs inside the virtual machine, it is sent to the

deduplication module in the host as shown in Figure 1.

Therefore, the deduplication function performs the

deduplication function by capturing the write event that

occurs during image operation of the virtual machine in real

Hybrid in-memory storage for cloud infrastructure

한국 인터넷 정보학회 (22권5호) 61

time. After calculating the required fingerprint, it is stored in

the DB. After examining the DB, if the same block to be

written exists, only the metadata necessary for writing is

recorded and the write operation is completed. If not, write

the write block to that memory and store the metadata at the

same time.

3. Applied Tests & Results

3.1 Management of Hybrid In-memory

Storage

Hybrid in-memory storage is installed in the form of a

kernel module. To facilitate installation and management, it

is installed in the Linux kernel's Proc file system and

managed through it as shown in figure 5. It is provided in

the form of /proc /<device_name> as shown below. And you

can check various information in /proc/sys/dev/<device_name>/

<device_ID>/. Also, GUI or CLI management tools are

provided for user convenience. It is designed to utilize this

tool to check, create, delete and restore status

(Figure 5) Proc filesystem view for hybrid in-memeory

storage.

3.2 Test Environments

The architecture of the two systems for applying hybrid

in-memory storage is shown in Figure 6.

The platform for applying the virtual machine system was

configured using Intel(R) Xeon(R) CPU E5-2697 v3 @

2.60GHz 64Core, CentOS 7.0, qemu-kvm hypervisor [18].

The virtual machine's operating system was configured as

window10 and installed on hybrid in-memory storage.

Virtual machines run on hybrid in-memory storage with the

entire operating system image. These operating system

images are available in sizes ranging from tens to hundreds

of gigabytes, and user disks are also provided in divided

portions. Deduplication is essential to provide these disks in

memory space. In the case of operating system images, the

same image used by default is provisioned through the clone

method as the primary base. So we were able to reduce the

30G operating system to 512M.

(a)

(b)

(Figure 6) VM & container(docker) application

((a)VM and (b) container)

For testing the container system, a container (docker)[19]

creates a hybrid in-memory container storage, and configures

the storage volume of the container on this storage. A

container creates and operates a file system (eg

Hybrid in-memory storage for cloud infrastructure

62 2021. 10

(Figure 7) The benchmark results for virtual machine. (Crystal disk Mark)

/var/lib/docker for docker) volume where the container runs

on hybrid in-memory container storage.

The container file system is composed of an unifying file

system (eg overlayfs [20]) and is composed of layers. It

consists of a merged access area, a container layer, and an

image layer. Each layer operates by creating and mounting

a specific directory on the in-memory container storage.

The container layer is a writable layer, and each container

is created on the top layer, allowing each container to have

its own state. After the container is created, all changes are

made in this layer. However, the R/W speed is fast because

it is done in memory. And for the efficiency of file

management, the difference information between the actual

image and the container image is included.

The image layer is a read-only layer that can be shared

with other containers. In addition, multiple images shared

with other layers can be operated in the container layer. And

the integrated access area includes link information of the

layer accessible to all file systems of the container layer and

the image layer and is shared with users. This allows access

to the file. The image layer can be shared with many

different systems to increase its efficiency. Container images

in the image layer should be pulled from public repositories

(eg github [21]) when containers are deployed. In this case,

it is efficient to store the image used in the container system

locally or to bring it in advance to ensure performance. In

this paper, the deployment speed is also fast because the

already pooled image exists on the hybrid in-memory disk.

In this paper, we tested using docker's overlayfs and

proceeded without performing deduplication on the system.

(Table 1) Testing environments for hybrid in-memory

storage

Testing Environment

Type VM Container

CPU
Intel® Xeon® CPU E5-2697A

2.6GHz 64Core (16)

RAM 755 GB

Storage 2.6 TB (SSD)

OS
CentOS

7.2.1511
Ubuntu 16.04

Kernel 3.10.0-327 4.4.0-generic

Virtual

environment
qemu-kvm, Docker-ce

Network 1G Ethernet

No. of Node
3 (1 Management Node +

2 Operating Node)

Hybrid in-memory storage for cloud infrastructure

한국 인터넷 정보학회 (22권5호) 63

The deployment of Seleted node

(Figure 8) The test for nginx deployment in kubernetes

3.3 Test Results

3.3.1 Test for virtual machine

In a virtual machine system, the most commonly used

crystal disk mark [22] for storage testing was installed and

tested on the OS (window 10) of the virtual machine. For the

Seq Q32T1, it refers to the speed when sequentially reading

and writing files in the queue, i.e. the speed when reading

and writing a size of 128 KiB with 32 instructions.

4K Q32T1 for Windows operating system. Since it uses

4 KB as a cluster on an NTFS system, which is the usual

format, we measure the speed while randomizing the queue

and the number of threads respectively.

For CrystalDiskMark, the Seq Q32T1 is considered the

maximum for read/write speed and the 4K Q32T1 is

considered the actual read/write speed. These experiments

were tested using a benchmark tool (CrystalDiskMark) and

are the result of 10 periodic tests for each read/write

operation as shown in figure 7. The measured results were

used to obtain the average of the two benchmark results.

Average values ​​are given in Table 2.

Comparing to the average values ​​as shown in Table 2, it

can be seen that the two tested benchmark cases have

significantly improved performance compared to normal

storage. But more importantly, it's a performance boost. The

4K Q32T1 has a better performance boost than the Seq

Q32T1, with performance gains of 42x for read operations

and 6x for write operations. Due to the nature of Windows

systems and asynchronous writes using DMA, it has been

found that write operations provide less performance

improvement than read operations.

(Table 2) The average Speed (MB/S) of Read/write

operation

Disk based VM Ours

Read Write Read Write

Seq Q32T1* 86.12 208.30 2,108.70 243.18

4K Q32T1** 2.70 4.98 114.02 32.82

 * Seq Q32T1: Sequential (Block Size=128KiB)

Read/Write [Queue:32/Thread:1]

** 4K Q32T1: Random 4KiB Read/Write

[Queue:32/Thread:1]

Hybrid in-memory storage for cloud infrastructure

64 2021. 10

3.3.2 Test for container

For the test of the container system, kubernetes [23] was

used, and the test was conducted by dividing a single master

node, a node equipped with an SSD, and a node equipped

with a hybrid in-memory storage. And, Nginx [24] image,

which is the most used web server application on hybrid

in-memory storage, was deployed as shown in figure 8.

When the deployed image is first configured, the image

is pulled through github and distributed on the hybrid

in-memory storage from the completed image when

redistributed. The test results are shown in Table 3 below

and the test results showed a performance improvement of

about 30%.

(Table 3) Nginx deployment test result (sec)

Ours
Docker in

SSD
Perf. Up

Nginx with

pulling
0.690 1.026 32%

Nginx without

pulling
0.49 0.71 28%

(Table 4) Nginx load test result

Max value comparison Ours
Docker

in SSD

Perf.

Up

Time taken for tests(s) 0.72 1.09 30%

Requests per second

(mean) [#/sec]
6950 4607 33%

Time per request

(mean)[ms]
71.9 108.5 33%

Time per request (mean,

across all concurrent

request) [ms]

0.14 0.22 33%

Transfer rate

[Kbytes/sec]
5735 3802 34%

Connection Time(ms) 13~227 11~1024

50 Iteration Average Ours
Docker

in SSD

Perf.

Up

Time taken for tests(s) 1.28 1.55 17%

Requests per second

(mean) [#/sec]
3901 3457 12.8%

Time per request

(mean)[ms]
128.3 154.6 17%

Time per request (mean,

across all concurrent

request) [ms]

0.26 0.31 16%

Transfer rate

[Kbytes/sec]
3219 2853 12.8%

Connection Time(ms) 12.7~1198 1485.56

As a second test, we conducted a web load test of the

deployed nginx as shown in Table 4. It was conducted

through the ab test of httpd-tools [25], and ab is a

benchmarking tool for the performance of the Apache HTTP

server. In the test, 500 simultaneous connections to 5000

requests were repeated 50 times. As shown in the table, as

a result of the test, the performance of nginx web showed a

performance improvement of about 30% in the comparison

of the maximum value, and an average performance of 50

times showed a performance improvement of about 12%.

4. Further Researches

We have tests to apply virtual machines and container

environments, which are often used in cloud computing, to

in-memory computing. As mentioned above, use cases for

the utilization of volatile memory in in-memory computing

are limited to the extent of databases.. In the future, this

system will maximize the stability for applying and

commercializing in-memory computing technology to edge

computing by developing storage utilizing main memory by

software. Also, large distrubuted system such as edge

computing and cloud computing clould be needed to develop

memory to share for fast data transaction or high avalabilty

[26]. Another research direction is to develop a high-speed

technologies that is more convenient and easier than using

technologies using high speed memory devices such as

PMEM device currently being developed.

5. Conclusion

In this paper, we developed a hybrid in-memory storage

for stability and high performance of cloud computing

infrastructure and tested it by applying a hypervisor-based

virtual machine system and a container-based cloud-native

environment. Hybrid in-memory storage combines the

characteristics of main memory and general storage (SSD) to

overcome the disadvantages of data loss due to the volatile

characteristics of memory, and virtual This has resulted in

improved performance of machines and containers. In the

case of the presented virtual machine system, the OS image,

which has the greatest influence on the speed of the virtual

Hybrid in-memory storage for cloud infrastructure

한국 인터넷 정보학회 (22권5호) 65

machine, is stored in the main memory so that high-speed

virtual machines can be executed. This allows the container

image to run in main memory. When a virtual machine is

deployed, users continue to create data while using the

virtual machine, and when this exceeds the main memory

capacity, the data is stored on disk storage. Additionally, for

container file systems, image data due to continuous pooling

is stored on disk storage. Because user data is stored on disk

storage, file access speed is slower than in-memory, but

suitable for efficient operation and storage of large data.

Therefore, it is stored in the main memory to support high

performance of the cloud infrastructure, and large user data

is stored in disk storage to overcome the capacity limit of the

main memory, so that an efficient cloud environment can be

built. Also, due to the volatile nature of main memory, it can

reasonably cope with backup/restore.

References

[1] Hao Zhang, Gang Chen, Beng Chin Ooi, Kian-Lee Tan,

Meihui Zhang, “In-Memory Big Data Management and

Processing: A Survey,” IEEE Transactions on

Knowledge and Data Engineering, Vol 27, issue 7, pp.

1920-1948, July, 2015.

https://doi.org/10.1109/TKDE.2015.2427795

[2] Soroosh Khoram, Yue Zha, Jialiang Zhang, Jing Li,

“Challenges and Opportunities: From Near-memory

Computing to In-memory Computing,” Proceedings of

the 2017 ACM on International Symposium on Physical

Design, pp. 43–46, March 2017.

https://doi.org/10.1145/3036669.3038242

[3] S. Robbins, “RAM is the new disk,” InfoQ News, Jun.

2008. https://www.infoq.com/news/2008/06/ram-is-disk/

[4] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis,

J. Leverich, D. Mazieres, S. Mitra, A. Narayanan, G.

Parulkar, M. Rosenblum, S. M. Rumble, E. Stratmann,

and R. Stutsman, “The case for RAMClouds: Scalable

high-performance storage entirely in dram,” ACM

SIGOPS Operating Syst. Rev., vol. 43, pp. 92–105,

2010. https://doi.org/10.1145/1713254.1713276

[5] Arora, I. and Gupta, A., “Improving performance of

cloud based transactional applications using in-memory

data grid,” International Journal of Computer

Applications, Vol 107, pp. 14-19. 2014.

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.

1.684.9087&rep=rep1&type=pdf

[6] Bahl, B., Sharma, V. and Rajpal, N., “Boosting

geographic information system’s performance using

in-memory data grid,” BVICAM’s International Journal

of Information Technology, Vol 4, pp. 468-473, 2012.

https://www.semanticscholar.org/paper/Boosting-Geogra

phic-Information-System%27s-using-Data-Bahl-Sharma/

a2f85cc1c536169ecf9747662a95a2f87b1eb744

[7] A. Kemper and T. Neumann, “HyPer: A hybrid OLTP

& OLAP main memory database system based on

virtual memory snapshots,” in IEEE 27th Int. Conf.

Data Eng., pp. 195–206, 2011.

https://doi.org/10.1109/ICDE.2011.5767867

[8] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin,

S. Zdonik, E. P. C. Jones, S. Madden, M. Stonebraker,

Y. Zhang, J. Hugg, and D. J. Abadi, “H-store: A

high-performance, distributed main memory transaction

processing system,” Proc. VLDB Endowment, vol. 1,

pp. 1496–1499, 2008.

https://doi.org/10.14778/1454159.1454211

[9] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P.

Mittal, R. Stonecipher, N. Verma, and M. Zwilling,

“Hekaton: SQL server’s memory-optimized OLTP

engine,” in Proc. ACM SIGMOD Int. Conf. Manag.

Data, pp. 1243–1254, 2013.

https://doi.org/10.1145/2463676.2463710

[10] Lee Kyu Woong, “Management of Data base replication

in main memory DBMS ALTIBASE for high

availability,” Journal of Internet Computing and

Services, vol 6 issue 1, pp73-84, 2005.

https://www.koreascience.or.kr/article/JAKO2005166105

43538.pdf

[11] Soo-Cheol Oh and Seong Woon Kim, “Design and

implementation of high-performance virtual desktop

system managing virtual desktop image in main

memory,” KIISE Transactions on Computing Practices,

Vol 22, No. 8, pp. 363-368, Aug, 2016.

https://doi.org/10.5626/KTCP.2016.22.8.363

[12] In-Memory Storage Driver

https://docs.docker.com/registry/storage-drivers/inmemory/

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.684.9087&rep=rep1&type=pdf
https://www.semanticscholar.org/paper/Boosting-Geographic-Information-System%27s-using-Data-Bahl-Sharma/a2f85cc1c536169ecf9747662a95a2f87b1eb744
https://www.koreascience.or.kr/article/JAKO200516610543538.pdf

Hybrid in-memory storage for cloud infrastructure

66 2021. 10

[13] Docker – Volumes

https://docs.docker.com/storage/volumes/

[14] Memory Optimized for Data-Centric Workloads

https://www.intel.co.kr/content/www/kr/ko/architecture-and

-technology/optane-dc-persistent-memory.html

[15] “QEMU Git tree - docs/interop/qcow2.txt,” qemu.org,

May 29, 2018.

https://github.com/qemu/qemu/blob/master/docs/interop/

qcow2.txt

[16] Jonathan Corbet, Alessandro Rubini and Greg

Kroah-Hartman, “Memory Mapping and DMA,” Linux

Device Drivers, 3rd Edition.

https://www.oreilly.com/library/view/linux-device-drivers/

0596005903/ch15.html

[17] OpenDedup – Opensource Dedupe to cloud and Local

storage

https://opendedup.org/odd/overview/

[18] “QEMU System Emulation User’s Guide,”

https://www.qemu.org/docs/master/system/index.

[19] Use containers to Build, Share and Run your

applications

https://www.docker.com/resources/what-container

[20] Aurora, Valerie, “Union file systems: Architecture,

features, and design choices,” LWN.net. Retrieved

2018-01-17.

https://lwn.net/Articles/324291/

[21] GitHub: Where the world builds software · GitHub

https://github-landing-page.netlify.app/

[22] CrystalDiskMark

https://osdn.net/projects/crystaldiskmark/

[23] Kubernetes- Container runtimes

https://kubernetes.io/ko/docs/setup/production-environme

nt/container-runtimes/

[24] NGINX Application Platform

https://www.nginx.com/products/

[25] ab - Apache HTTP server benchmarking tool

https://httpd.apache.org/docs/2.4/en/programs/ab.html

[26] AL-Harbi Fahad Jazi, Kangseok kim, and Jai-Hoon

Kim, “Design and Cost Analysis for a Fault-Tolerant

Distributed Shared Memory System,” Journal of Internet

Computing and Services, vol 17 issue 4, pp1-9, 2016.

https://doi.org/10.7472/jksii.2016.17.4.01

https://www.intel.co.kr/content/www/kr/ko/architecture-and-technology/optane-dc-persistent-memory.html
https://github.com/qemu/qemu/blob/master/docs/interop/qcow2.txt
https://www.oreilly.com/library/view/linux-device-drivers/0596005903/ch15.html
https://kubernetes.io/ko/docs/setup/production-environment/container-runtimes/

Hybrid in-memory storage for cloud infrastructure

한국 인터넷 정보학회 (22권5호) 67

◐ Authors ◑

Dae Won Kim

received the B.S., M.S., and Ph.D. degree in Electrical Engineering, Kyungpook National University, Daegu,

South Korea in 1998, 2000, and 2004 respectively. He joined Electronics and Telecommunications Research

Institute (ETRI) in Daejeon, Korea in 2004 and he is working as a Principal Researcher. He has developed a

cloud edge platform technology for ultra-low latency edge service. His research interests include cloud

computing, edge computing and AI edge service. Also, he has deveopled a national standard for ITU-T

SG13 as an editor and ISOIEC JTC1/SC 38.

E-mail: won22@etri.re.kr

Sun Wook Kim

received the B.S. degree from Chungbuk National University, Korea, the M.S. degree from Hanyang

University, Korea in 1996 and 2001 respectively, all in Computer Science. And he received his Ph.D. degree

from Korea University, Korea in 2011. He joined Electronics and Telecommunications Research Institute

(ETRI) in Daejeon, Korea in 2001 and he is working as a Principal Researcher. He has developed a cloud

edge platform technology for ultra-low latency edge service. His research interests include cloud computing,

edge computing and AI edge service.

E-mail: swkin99@etri.re.kr

Soo Cheol Oh

received the B.S., M.S., and Ph.D. degree in Computer Engineering, Pusan National University, Seoul, South

Korea in 1995, 1997, and 2003 respectively.

He had worked a researcher in LG Electronics from 1997 to 1998. He is currently a principal researcher of

Electronics and Telecommunication Research Institute (ETRI) in Daejeon, South Korea. His research interests

include quantum computing, cloud computing and virtual desktop infrastructure system.

E-mail: ponylife@etri.re.kr

