• Title/Summary/Keyword: Viterbi Decoding

Search Result 128, Processing Time 0.024 seconds

Adaptive Interference Cancellation for a Space-time Coded DS-CDMA System in Ending Channels with Arrival Time Difference (도착시간차가 존재하는 페이딩 채널에서 시공간부호화된 DS-CDMA시스템을 위한 적응간섭제거 복합수신기)

  • 이주현;이재흥
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.149-152
    • /
    • 2002
  • In this paper, an adaptive interference canceller (AIC) Is applied to the space-time coded DS-CDMA system in fading channels with arrival time difference from multiple transmit antennas In a CDMA system, arrival time difference causes not only inter-antenna and Inter-symbol interference but also multiple-access Interference even in a downlink. To mitigate the effect of the Interferences an AIC and ML decoding joint scheme Is proposed fur a space-time coded DS-CDMA system in which an adaptation process of tile AIC is merged in the Viterbi decoding algorithm. The performance of the proposed receiver is evaluated for the system with two transmit antennas. It is shown that the proposed receiver achieves significant performance improvement over the ML decoding receiver without the AIC

  • PDF

On the SOVA for Extremely High Code Rates over Partial Response Channels

  • Ghrayeb, Ali
    • Journal of Communications and Networks
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • In this paper, we extend the derivation of the iterative soft-output Viterbi algorithm (SOVA) for partial response (PR) channels, and modify its decoding process such that it works consistently for arbitrary high code rates, e.g., rate 64/65. We show that the modified SOVA always outperforms the conventional SOVA that appears in the literature with a significant difference for high code rates. It also offers a significant cut down in the trace-back computations. We further examine its performance for parallel and serial concatenated codes on a precoded Class IC partial response (PR4) channel. Code rates of the form $\frac{k_0}{k_0+1}$($k_0$ = 4, 8, and 64) are considered. Our simulations indicate that the loss suffered by the modified SOVA, relative to the APP algorithm, is consistent for all code rates and is at most 1.2 dB for parallel concatenations and at most 1.6 dB for serial concatenations at $P_b$ = $10^{-5}$.

Design of a Viterbi Decoder with an Error Prediction Circuit for the Burst Error Compensation (에러 예측회로를 이용한 Burst error 보정 비터비 디코더 설계)

  • 윤태일;박상열;이제훈;조경록
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.10
    • /
    • pp.45-52
    • /
    • 2004
  • This Paper presents a modified hard decision Viterbi decoder with an error prediction circuit enhancing performance for the burst error inputs. Viterbi decoder employs the maximum likelihood decoding algorithm which shows excellent error correction capability for the random error inputs. Viterbi decoders, however, suffer poor error correction performance for the burst error inputs under the fading channel. The proposed error prediction algorithm increases error correction capability for the burst errors. The algorithm estimaties the burst error data area using the maximum path metric for the erroneous inputs, It calculates burst error intervals based on increases in the maximum values of a path metric. The proposed decoder keeps a performance the same as the conventional decoders on AWGN channels for the IEEE802.l1a WLAN system. It shows performance inproving 15% on the burst error of multi-path fading channels, widely used in mobile systems.

Differential space-time coded OFDM using multiple symbol decoding (다중 심벌 디코딩을 이용한 차동 시공간 부호화된 OFDM)

  • Yoo Hang-Youal;Kim Seung-Youal;Kim Chong-Il
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.3 no.1 s.4
    • /
    • pp.117-125
    • /
    • 2004
  • Space-time coding and modulation exploit the presence of multiple transmit antennas to improve performance on multipath Rayleigh fading channels. In this paper, we propose the Trellis-Coded Differential Space Time Modulation-OFDM system with multiple symbol detection. The Trellis-code perform the set partition with unitary group codes. The Viterbi decoder containing new branch metrics is introduced in order to improve the bit error rate (BER) in the differential detection of the Unitary differential space time modulation. Also, we describe the Viterbi algorithm in order to use this branch metrics. Our study shows that such a Viterbi decoder improves BER performance without sacrificing bandwidth and power efficiency.

  • PDF

A new noncoherent detection algorithm for DBO-CSS (새로운 DBO-CSS 수신기 구조)

  • Yoon, Sang-Hun;Chong, Jong-Wha
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.4
    • /
    • pp.59-64
    • /
    • 2007
  • In this paper, we propose a new decoding method for differentially biorthogonal chirp spread spectrum (DBO-CSS). In DBO-CSS, the information is carried on the differential phase not between the adjacent sub-chirp symbols but between the sub-chirp symbols in the same position of adjacent full-chirp symbol. So, the conventional multiple symbol differential detection (MSDD) algorithms to enhance the BER performance can not be applied to the DBO-CSS directly. In this paper, we propose a new differential detection algorithm based on a partial MSD(multiple symbol detection) and a viterbi algorithm. It is shown that the performance gain of the proposed algorithm when compared with that of the conventional detection algorithm is around 2.5dB at BER = 10-5.

Iterative Multiple Symbol Differential Detection for Turbo Coded Differential Unitary Space-Time Modulation

  • Vanichchanunt, Pisit;Sangwongngam, Paramin;Nakpeerayuth, Suvit;Wuttisittikulkij, Lunchakorn
    • Journal of Communications and Networks
    • /
    • v.10 no.1
    • /
    • pp.44-54
    • /
    • 2008
  • In this paper, an iterative multiple symbol differential detection for turbo coded differential unitary space-time modulation using a posteriori probability (APP) demodulator is investigated. Two approaches of different complexity based on linear prediction are presented to utilize the temporal correlation of fading for the APP demodulator. The first approach intends to take account of all possible previous symbols for linear prediction, thus requiring an increase of the number of trellis states of the APP demodulator. In contrast, the second approach applies Viterbi algorithm to assist the APP demodulator in estimating the previous symbols, hence allowing much reduced decoding complexity. These two approaches are found to provide a trade-off between performance and complexity. It is shown through simulation that both approaches can offer significant BER performance improvement over the conventional differential detection under both correlated slow and fast Rayleigh flat-fading channels. In addition, when comparing the first approach to a modified bit-interleaved turbo coded differential space-time modulation counterpart of comparable decoding complexity, the proposed decoding structure can offer performance gain over 3 dB at BER of $10^{-5}$.

Performance Analysis of Asymmetric Turbo Codes Using SOVA Decoding Algorithm (SOVA 복호방법을 이용한 비대칭구조 터보부호의 성능분석)

  • 신한균;강수훈;최회동;노종선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.4A
    • /
    • pp.553-557
    • /
    • 2000
  • It is known that turbo codes have an error-floor bound according to the effective free distance at high SNR. But the performance for turbo codes in the water-fall area at low SHR has not been studied yet. In this paper, asymmetric turbo codes that consist of RSC(recursive systematic convolutional) codes with different constraint length are proposed and their performance is analysed for SOVA decoding algorithm.

  • PDF

Multi-dimensional DC-free trellis codes based on tow-dimensional constellation (2차원 성상도를 이용한 다차원 무직류 격자형부호)

  • 정창기;황성준;주언경
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.3
    • /
    • pp.47-53
    • /
    • 1998
  • Multi-dimensional DC-free trellis codes based on two-dimensional constellation which can be omplemented more easily than conventional codes are proposed and their performances are analyzed in this paper. 2N-dimensional constellation of the proposed codes is constructed by concatenating N 2-dimensional constellation. Thus, for the proposed codes, information bits can be assigned easily to each signal point of the 2-dimensional consteellation and DC-free characteristic can be simply obtained by the symmetric structure of the constellation. In addition, since Viterbi decoder can calculate multi-dimensional Euchlidean distance between signals by simple sum of each 2-dimensional Euclidean distanc, decoding complexity can be reduced. The performance analysis shows that the proposed codes have almost same spectral characteristic and error performance as compared with conventional codes. However, the complexity is shown to be reduced further due to the construction method of contellation and the simple decoding algorithm of the proposed codes.

  • PDF

A Reduced Complexity Decoding Scheme for Trellis Coded Modulation

  • Charnkeitkong, Pisit;Laopetcharat, Thawan
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.2039-2042
    • /
    • 2002
  • In this paper, we propose a technique used to simplify the trellis diagram, thus, reduce the complexity of Viterbi decoder in term of the number of Compare-Select (CS) operations needs in decoding process. It is shown that if the branch metrics are properly decomposed into orthogonal components. The trellis diagram can be modified that each original state with large number branches terminating to it can be broken into a number of sub-states having smaller number of branches terminating to them. Simulation results shown that the newly proposed technique can be used reduced the complexity of 8 and 16 PSK-TCMs without degrading the BER performance.

  • PDF

A Study on the Digital Design for Voice Modem Using the Multicarrier DS-CDMA in Powerline Channels (전력선 채널에서 멀티캐리어 DS-CDMA를 이용한 전력선 음성모뎀의 디지털부 구현에 관한 연구)

  • 이상준;김민걸;이종성;구시경;박광철;오정현;김기두
    • Proceedings of the IEEK Conference
    • /
    • 2000.06a
    • /
    • pp.77-80
    • /
    • 2000
  • In this paper, we implemented the voice modem using the multicarrier DS-CDMA in powerline channels. Both TMS320C5402 of Texas Instrument and FPGA FLEX 10K EPF10K100ARC240 of ALTERA are used to realize the proposed system. For robustness in the powerline channel, we used multicarrier DS-CDMA modulation, convolutional encoding/Viterbi decoding, and interleaving. Finally, we showed satisfactory performance in the laboratory experiment.

  • PDF