• Title/Summary/Keyword: View-invariant

Search Result 51, Processing Time 0.028 seconds

On a Background of the Existence of Multi-variable Link Invariants

  • Nagasato, Fumikazu;Hamai, Kanau
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.2
    • /
    • pp.233-240
    • /
    • 2008
  • We present a quantum theorical background of the existence of multi-variable link invariants, for example the Kauffman polynomial, by observing the quantum (sl(2,$\mathbb{C}$), ad)-invariant from the Kontsevich invariant point of view. The background implies that the Kauffman polynomial can be studied by using the sl(N,$\mathbb{C}$)-skein theory similar to the Jones polynomial and the HOMFLY polynomial.

An Adaptive Controller Cooperating with Fuzzy Controller for Unstable Nonlinear Time-invariant Systems (불안정 비선형 시불변 시스템을 위한 퍼지제어기가 결합된 적응제어기)

  • Dae-Young, Kim;In-Hwan, Kim;Jong-Hwa, Kim;Byung-Kyul, Lee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.946-961
    • /
    • 2004
  • A new adaptive controller which combines a model reference adaptive controller (MRAC) and a fuzzy controller is developed for unstable nonlinear time-invariant systems. The fuzzy controller is used to analyze and to compensate the nonlinear time-invariant characteristics of the plant. The MRAC is applied to control the linear time-invariant subsystem of the unknown plant, where the nonlinear time-invariant plant is supposed to comprise a nonlinear time-invariant subsystem and a linear time-invariant subsystem. The stability analysis for the overall system is discussed in view of global asymptotic stability. In conclusion. the unknown nonlinear time-invariant plant can be controlled by the new adaptive control theory such that the output error of the given plant converges to zero asymptotically.

Human Activity Recognition using View-Invariant Features and Probabilistic Graphical Models (시점 불변인 특징과 확률 그래프 모델을 이용한 인간 행위 인식)

  • Kim, Hyesuk;Kim, Incheol
    • Journal of KIISE
    • /
    • v.41 no.11
    • /
    • pp.927-934
    • /
    • 2014
  • In this paper, we propose an effective method for recognizing daily human activities from a stream of three dimensional body poses, which can be obtained by using Kinect-like RGB-D sensors. The body pose data provided by Kinect SDK or OpenNI may suffer from both the view variance problem and the scale variance problem, since they are represented in the 3D Cartesian coordinate system, the origin of which is located on the center of Kinect. In order to resolve the problem and get the view-invariant and scale-invariant features, we transform the pose data into the spherical coordinate system of which the origin is placed on the center of the subject's hip, and then perform on them the scale normalization using the length of the subject's arm. In order to represent effectively complex internal structures of high-level daily activities, we utilize Hidden state Conditional Random Field (HCRF), which is one of probabilistic graphical models. Through various experiments using two different datasets, KAD-70 and CAD-60, we showed the high performance of our method and the implementation system.

A Study On the Comparison of the Geometric Invariance From A Single-View Image (단일 시각방향 영상에서의 기하 불변량의 특성 비교에 관한 연구)

  • 이영재;박영태
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.639-642
    • /
    • 1999
  • There exist geometrically invariant relations in single-view images under a specific geometrical structure. This invariance may be utilized for 3D object recognition. Two types of invariants are compared in terms of the robustness to the variation of the feature points. Deviation of the invariant relations are measured by adding random noise to the feature point location. Zhu’s invariant requires six points on adjacent planes having two sets of four coplanar points, whereas the Kaist method requires four coplanar points and two non-coplanar points. Experimental results show that the latter method has the advantage in choosing feature points while suffering from weak robustness to the noise.

  • PDF

Extended SURF Algorithm with Color Invariant Feature and Global Feature (컬러 불변 특징과 광역 특징을 갖는 확장 SURF(Speeded Up Robust Features) 알고리즘)

  • Yoon, Hyun-Sup;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.6
    • /
    • pp.58-67
    • /
    • 2009
  • A correspondence matching is one of the important tasks in computer vision, and it is not easy to find corresponding points in variable environment where a scale, rotation, view point and illumination are changed. A SURF(Speeded Up Robust Features) algorithm have been widely used to solve the problem of the correspondence matching because it is faster than SIFT(Scale Invariant Feature Transform) with closely maintaining the matching performance. However, because SURF considers only gray image and local geometric information, it is difficult to match corresponding points on the image where similar local patterns are scattered. In order to solve this problem, this paper proposes an extended SURF algorithm that uses the invariant color and global geometric information. The proposed algorithm can improves the matching performance since the color information and global geometric information is used to discriminate similar patterns. In this paper, the superiority of the proposed algorithm is proved by experiments that it is compared with conventional methods on the image where an illumination and a view point are changed and similar patterns exist.

Object Recognition by Invariant Feature Extraction in FLIR (적외선 영상에서의 불변 특징 정보를 이용한 목표물 인식)

  • 권재환;이광연;김성대
    • Proceedings of the IEEK Conference
    • /
    • 2000.11d
    • /
    • pp.65-68
    • /
    • 2000
  • This paper describes an approach for extracting invariant features using a view-based representation and recognizing an object with a high speed search method in FLIR. In this paper, we use a reformulated eigenspace technique based on robust estimation for extracting features which are robust for outlier such as noise and clutter. After extracting feature, we recognize an object using a partial distance search method for calculating Euclidean distance. The experimental results show that the proposed method achieves the improvement of recognition rate compared with standard PCA.

  • PDF

Learning Similarity between Hand-posture and Structure for View-invariant Hand-posture Recognition (관측 시점에 강인한 손 모양 인식을 위한 손 모양과 손 구조 사이의 학습 기반 유사도 결정 방법)

  • Jang Hyo-Yeong;Jeong Jin-U;Byeon Jeung-Nam
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.187-191
    • /
    • 2006
  • 본 논문에서는 비전 기술에 기반을 둔 손 모양 인식 시스템의 성능 향상을 위해 학습을 통해 손 모양과 손 구조 간 유사도를 결정하는 방법을 제안한다. 비전 센서에 기반을 둔 손 모양 인식은 손의 높은 자유도로 인한 자체 가림 현상과 관찰 방향 변화에 따른 입력 영상의 다양함으로 인해 인식에 어려움이 따른다. 따라서 비전 기반 손 모양 인식의 경우, 카메라와 손 간의 상대적인 각도에 제한을 두거나 여러 대의 카메라를 배치하는 것이 일반적이다. 그러나 카메라와 손 간의 상대적 각도에 제한을 두는 경우에는 사용자의 움직임에 제약이 따르게 되며, 여러 대의 카메라를 사용할 경우에는 각 입력된 영상에 대한 인식 결과를 최종 인식 결과에 반영하는 방식에 대해서 추가적으로 고려해야 한다. 본 논문에서는 비전 기반 손 모양 인식의 이러한 문제점을 개선하기 위하여 인식의 과정에서 사용되는 손 모양 특징을 손 구조적인 각도 정보와 손 영상 특징으로 나누고, 학습을 통해 각 특징 간 연관성을 정의한다.

  • PDF

View-Invariant Body Pose Estimation based on Biased Manifold Learning (편향된 다양체 학습 기반 시점 변화에 강인한 인체 포즈 추정)

  • Hur, Dong-Cheol;Lee, Seong-Whan
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.11
    • /
    • pp.960-966
    • /
    • 2009
  • A manifold is used to represent a relationship between high-dimensional data samples in low-dimensional space. In human pose estimation, it is created in low-dimensional space for processing image and 3D body configuration data. Manifold learning is to build a manifold. But it is vulnerable to silhouette variations. Such silhouette variations are occurred due to view-change, person-change, distance-change, and noises. Representing silhouette variations in a single manifold is impossible. In this paper, we focus a silhouette variation problem occurred by view-change. In previous view invariant pose estimation methods based on manifold learning, there were two ways. One is modeling manifolds for all view points. The other is to extract view factors from mapping functions. But these methods do not support one by one mapping for silhouettes and corresponding body configurations because of unsupervised learning. Modeling manifold and extracting view factors are very complex. So we propose a method based on triple manifolds. These are view manifold, pose manifold, and body configuration manifold. In order to build manifolds, we employ biased manifold learning. After building manifolds, we learn mapping functions among spaces (2D image space, pose manifold space, view manifold space, body configuration manifold space, 3D body configuration space). In our experiments, we could estimate various body poses from 24 view points.

Pose Invariant View-Based Enhanced Fisher Linear Discriminant Models for Face Recognition

  • Lee, Sung-Oh;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.101.2-101
    • /
    • 2001
  • This paper proposes a novel face recognition algorithm to recognize human face robustly under various conditions, such as changes of pose, illumination, and expression, etc. at indoor environments. A conventional automatic face recognition system consists of the detection and the recognition part. Generally, the detection part is dominant over the other part in the estimating whole recognition rate. So, in this paper, we suggest the view-specific eigenface method as preprocessor to estimate various poses of the face in the input image. Then, we apply the Enhanced FLD Models (EFM) to the result of it, twice. Because, the EFM recognizes human face, and reduces the error of standardization effectively. To deal with view-varying problem, we build one basis vector set for each view individually. Finally, the dimensionalities of ...

  • PDF

Topological Properties of Recursive Circulants : Disjoint Cycles and Graph Invariants (재귀원형군의 위상 특성 : 서로소인 사이클과 그래프 invariant)

  • Park, Jeong-Heum;Jwa, Gyeong-Ryong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.8
    • /
    • pp.999-1007
    • /
    • 1999
  • 이 논문은 재귀원형군 G(2^m , 2^k )를 그래프 이론적 관점에서 고찰하고 정점이 서로소인 사이클과 그래프 invariant에 관한 위상 특성을 제시한다. 재귀원형군은 1 에서 제안된 다중 컴퓨터의 연결망 구조이다. 재귀원형군 {{{{G(2^m , 2^k )가 길이 사이클을 가질 필요 충분 조건을 구하고, 이 조건하에서 G(2^m , 2^k )는 가능한 최대 개수의 정점이 서로소이고 길이가l`인 사이클을 가짐을 보인다. 그리고 정점 및 에지 채색, 최대 클릭, 독립 집합 및 정점 커버에 대한 그래프 invariant를 분석한다.Abstract In this paper, we investigate recursive circulant G(2^m , 2^k ) from the graph theory point of view and present topological properties of G(2^m , 2^k ) concerned with vertex-disjoint cycles and graph invariants. Recursive circulant is an interconnection structure for multicomputer networks proposed in 1 . A necessary and sufficient condition for recursive circulant {{{{G(2^m , 2^k ) to have a cycle of lengthl` is derived. Under the condition, we show that G(2^m , 2^k ) has the maximum possible number of vertex-disjoint cycles of length l`. We analyze graph invariants on vertex and edge coloring, maximum clique, independent set and vertex cover.