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An Adaptive Controller Cooperating with Fuzzy Controller
for Unstable Nonlinear Time-invariant Systems

Byung-Kyul Leet - Dae-Young Kim#* - In-Hwan Kim#** - Jong-Hwa Kim#*#**

Abstract : A new adaptive controller which combines a model reference adaptive
controller (MRAC) and a fuzzy controller is developed for unstable nonlinear
time-invariant systems. The fuzzy controller is used to analyze and to compensate the
nonlinear time-invariant characteristics of the plant. The MRAC is applied to control
the linear time-invariant subsystem of the unknown plant, where the nonlinear
time-invariant plant is supposed to comprise a nonlinear time-invariant subsystem and
a linear time-invariant subsystem. The stability analysis for the overall system is
discussed in view of global asymptotic stability. In conclusion, the unknown nonlinear
time-invariant plant can be controlled by the new adaptive control theory such that the
output error of the given plant converges to zero asymptotically.
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i with the robust stability problem™™ to
1. Introduction

compensate the nonlinear time-invariant
If the plant is a unknown nonlinear characteristics of the plant and can

time- invariant system which cannot be achieve stability of overall system.
approximated as a linear time-invariant However their performance cannot be
model, most adaptive control theories satisfied because they have no specific

could not be applied Dbecause of compensation tools for the nonlinear

mathematical restrictions™®. A few time-invariant characteristics. To solve

applicable adaptive control theories deal this problem fuzzy control theories®
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can be introduced. They could be
especially useful where the plant is
unknown or too complex to be analyzed
by model-based control theories. If these
fuzzy control theories, however, need
input/output data in order to establish
fuzzy logic control structures, they could
not be applied to control an unstable
nonlinear time- invariant system:.

A new adaptive control theory which
combines a fuzzy controller and the
MRAC is developed. The fuzzy controller
within the new control theory is used to
analyze and to compensate the nonlinear
time-invariant characteristics of the
plant. It is supposed that a given
nonlinear time-invariant plant comprises
a nonlinear time-invariant subsystem and
a linear time-invariant subsystem. The
fuzzy identification method suggested by
Takaki and Sugeno[gj is adopted to model
the nonlinear time-invariant characteristic
which is considered as the steady state
output error. Here the error generator is
assumed to generate the output error of
the MRAC system in steady state and is

modeled as a fuzzy model. A fuzzy control
system with state feedback is then
designed in order to make the output of
the error generator converge to zero
asymptotically. In conclusion, the unknown
nonlinear time-invariant plant can be
controlled by the new adaptive control
theory such that the output error of the
given plant converges to Zero
asymptotically.

2. Model Reference Adaptive Control
- |deal Case (relative degree n*=1)

When a plant is linear time-invariant.
the standard structure of the MRAC
system is shown in Fig. 1. The plant is
represented by linear time-invariant

differential equations
x, = A,x,+ b,u (1)
Yy = hpTxp

where x, : R” — R"is the n-dimensional
state vector, u : R —R is the input, yp :
R’ R is the output. The transfer

Zm(s) ym( )
ko R é e (D
EE—
() w() 7,09 e

\$ Pl Ry

w(? 4,1

03 () ja——@2()

G

Fig. 1 The standard structure of the model reference adaptive control
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function W,(s) of the plant is represented
as

W) = hi(sI—=A)7"b, 2 &, ?;((ss)) (2)

where W,(s) is strictly proper with Z(s)
a monic Hurwitz polynomial of degree
m(<n—1), R»(s) a monic polynomial of
degree n, and %, a constant parameter.
Here it is assumed that only m, n and
the sign of ., are known as a priori
information.

A reference model represents the
behavior expected from the plant when it
is augmented with a suitable controller.

The model has a reference input r(t) and
V.{D. The
piecewise continuous and uniformly

bounded. The transfer function of the
model is defined as

an output input r{) is

Zuls) (3)

_ 3T _ -1 A

where Z,(s) and R,(s) are monic Hurwitz

polynomials of degree n-1 and n

respectively, and %, is a positive
constant.

The control structure must be chosen so
that constant values of the controller
which perfect

parameters exist for

regulation or tracking is achieved

asymptotically. The controller is
composed of a gain A(#), the feedforward
control loop with the parameter vector
0,(» and the feedback control loop with
the parameter 6,($ and parameter vector

0,(£). It is described completely by the

following differential equations.

(948)

@ () = Aw(d) + lu(d
o) = A awyD + 1y) (4)
wD = 67D w(d

o) 2[AD), o (), D), 0 (D]7,
) 2 KD, 05D, 0D, 501", kR'—R,
0,,0,: R"—>R" "' 6:R—R,

where

8,, ws: R">R"" and A is an (n-1 x n-1)
stable matrix arbitrarily chosen by a
Therefore, the
overall control system combining (1) with

controller designer.

(4) can be represented by the following

equations.
% A, 0 0][x,] [,
@ |=| 0 A0\ o |+}1 [687(t) ()]
0 Ihi 0 Al g, 0
y,=hlx, . 5

When the follbwing parameter errors
are defined as

WO2R)—F, ¢o(#) 2 6(1)— 6,

$,(1)=0,(t)— 01¢:(£)= 65(¢)— 03,
(1) 2 [(8), (1), do(1), 7T

the state equation (5) can also be written

as
t=Ax+tblkr+é 0l y,=hlx 6)

where x=[x], of, @J17. h,= [k}, 0,017,

A, +0b,hT b,6) 5,05
A= losny  A+1l107 65 |, (D)
Ih] 0 A
b=[b, 10"
When ¢(¢) =0 that is @6 =8", (6)
represents the reference model

nonminimaly which can be described by
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the (3z—2)th order differential equation.

Ko =A xpet bEY, V= hIx,. (8)

T T T.
T
where x,.=[x, ,0],o;]",

RI(sI—A ) 'b, = %Wm(s).

Subtracting (8) from (6),
equation between the

the error
reference model
and the plant can be obtained as

et) = A e(t)+ b, [¢ 1 (H)alD)] (9)
ea(t)y=hnlet)

where e(t)x(t)—x,.¢) is the state error
and e =y,—vy. is the output error. The
output error e is expressed as the

following equation.
ex(8) = = W,(s) 8 7(1) (1) (10)

Furthermore, the reference model can
be chosen as (3) so that its transfer
function W,s) is positive

real(SPR), (A, b)) 1is stabilizable and
(rY, A.) is detectable.

strictly

Therefore, an

adaptive control law can be derived from
the Lyapunov stability theory using the
That

ig, the parameter error vector ¢(f) is

Meyer-Kalman-Yakubovich lemma.

updated according to the following
adaptive control law'V
¢= 0=—sgn(k)e(t) a(t) (11

and the equilibrium state (e= 0, ¢=0)
of (9) and (11) is
stable.

Since e; as well as the output v, of the

globally uniformly

reference model are bounded, 1y, 1is

(949)

bounded and @(¢) is bounded so that
e(t)>0 as t—w or |ef(#)] —0 as oo,

In conclusion, the equilibrium state of
the MRAC
asymptotically stable.

system is globally

3. Derivation of a New Adaptive
Fuzzy Controller

3.1 The Basic Analysis and Assumptions for the Plant

When a plant is modeled as linear time
invariant, the standard MRAC theory can
be used to control the given unknown
plant. If the plant evolves nonlinear
time-invariant characteristics, it may be
impossible to control it using the control
theory developed in chapter 2 because
some required assumptions are not
satisfied. Intuitively, it may be assumed
that the output error would be generated
by the

characteristics of the plant.

nonlinear time-invariant

Assumption 3.1

An arbitrary nonlinear time-invariant
plant is assumed to be composed of a
linear time-invariant subsystem and a
nonlinear time-invariant subsystem. Then
the nonlinear time-invariant characteristics
of the plant are dependent only upon the
nonlinear time-invariant subsystem.

Even for nonlinear systems whose
mathematical models cannot be separated
into linear and nonlinear terms explicitly,
they might be

assumption 3.1

supposed to satisfy

because they are
composed of linear first order terms and
nonlinear higher order terms when they
are expanded into Taylor series at a fixed

time.
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Under this the
input/output relation for the plant can be

assumption,

described as in Fig. 2.
Thus the output of the plant v, is

described as

Vo = Yo T Y. (12)

Nonlinear
Time-invariant
Subsystem

Linear
Time-invariant
Subsystem

Nonlinear Time-invariant Plant

Fig. 2 Input/output relation for the plant under
the assumption 3.1

Assumption 3.2

Although the plant which satisfies
assumption 3.1 has nonlinear time-
invariant characteristics, if it is not

known, the standard MRAC theory can
still be applied under the assumption
that it is linear time-invariant.

When the standard MRAC is applied to
the plant described by the (12), the

the control system is

expressed as Fig. 3.

structure of

Then the output error e; in Fig. 3 is

expressed as

el = Yy = Vm = Yoo — Ym T Yy (13)

If the nonlinear time-invariant

subsystem does not appear in the plant,
Vv 1s naturally equal to zero. In this

case the plant is linear time- invariant
and the output error es is given as

€1 = ¥p 7 Y = VoL T Vm (14)

and the steady state output error will

converge to zero, that is }im e, = 0, by
— 0

the control action of the standard MRAC.
Where the
characteristics are contained in the plant,

nonlinear time-invariant
the steady state error will not converge
to zero. In this case the steady state
error can be considered as the output of
the nonlinear time-invariant subsystem

and it can also be considered as the

output error of the overall control system
That is,

in steady state.

Reference  Model

Model Reference

r(9) u(d

Nonlinear
Time-invariant
Subsystem

» Adaptive Controller

(MRAC) |
1

Time-invariant

Subsystem VoL

1
]
]
1
1
]
‘
N ]
Linear +T 1
i
]
]
i
Unknown Plant H

e m e — e —————————

Fig. 3 The standard MRAC control system under the assumption 3.2

(950)
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tlergo e() = }Lngo[ (Vo = ) + vyl
= lim (y,r = y,) + lmy,y (15)
= lim v

If a method exists, which makes the

steady state output error }Lnlo Y converge

time-invariant
could be
controlled completely within the standard
MRAC structure.

to zero, the nonlinear

plant analyzed as Fig. 2

ion 3.3
The nonlinear time-invariant subsystem

ssum

in Fig. 2 is considered as the error
generator which generates the output
error of the MRAC system in steady
state, in the case where the unknown
plant is assumed to be linear time-
invariant.

Based on the assumption 3.3, (13) can

be expressed as

e1 = Yy = Ym = (Vo — Yw) T ¥in
= €14 + eiN (16)
where €14 = Y, — ¥ 1s the output

error of the standard MRAC when the

plant is time- invariant, eiN= Y 18
the output of the error generator. Then
the nonlinear time-invariant unknown
plant can be substituted .into Fig. 3 as

shown in Fig. 4.

:' Error H
u) Generator Hy =y, +e
1
i Plant assumed *
H to be Linear

1 ]
! Time-invariant '

)
i Unknown Plant !

Fig. 4 A description of the unknown plant under
the MRAC

(951)

The control aim is to find a method

which generate an additional control
input such that the output of the error
generator converges to zero in steady

state, that is ,hfi, eindd =0.

3.2 Fuzzy Identification for the Error Generator and
Design of a Fuzzy Controller

If the behavior of the error generator is
analyzed, it could bhe achieved to obtain
an additional control input so that the
output of error generator asymptotically
converges to zero in steady state. The
error generator of the unknown plant is
considered as a fuzzy model and is
identified using a fuzzy identification
method. A fuzzy controller is designed
such that the output of the identified
fuzzy error generator goes to zero and
resultantly the additional control input
added to the input of the

standard MRAC is obtained.

control

identification of the error

3.2.1 Fuzzy
generator

Takaki and Sugeno’s fuzzy model® is
adopted asgs a fuzzy model and it is
identified according to the identification
steps in Fig. 5 suggested by Sugeno and
Kang®.

Takaki and Sugeno’s fuzzy model is
composed of fuzzy IF-THEN rules which
represent input/output

locally linear

relations of the error generator.
The 7th rule is expressed as follows.
Rule i : _
IF e(k)is Fiand - and ey(k—m+1) is F,,

THENe; (k+1)=aj e)(B) + ay e(k—1) + (17
+ay, ei(k—m+ 1)+ b ulk)
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—~—>‘ Premise structure identification J

v

—PLConsequent structure identification

for model verification

v

[Ven’ﬁcation of consequent StructureJ

( Calculation of the criterion ‘

[_Verification of premise structurej

\ 4
Determination of fuzzy model

Fig. 5 The identification procedure of a fuzzy
model

e(k—j+1D0=1, 2, -,

m) are state variables of the fuzzy model,

where =1, 2, . I,
af and b are consequent parameters,

of which

membership functions are represented as

and F! are fuzzy sets

continuous piecewise-polynomial functions.
If the
expressed in vector-matrix notation, it

consequent part of (17) is

can be written as follows.

Rule 1: ]
IF e/ (k) isF{and -~ and e, (k—m+1) isF,,
THEN ei(k+1) =F,e (k) + B;ul(k)  (18)

where e (B=le (. e (k—1), . e;(k—m+1]"
is the state vector of the fuzzy model and
ei(k+ D)= [el(k+ D), el (). el (k=D el (k—m)]T
is the output from the ¢th rule. When a
pair of { e;(k), (k) } is given, the final
output of the fuzzy system is inferred as
follows.

S ELR) [Fie (k)+ Bufh)]
=l (19)
PN

ei(k+1)=

(952)

where &= I Fite/(k—j+1)  and
Fi{e,(k—j+1)) is the grade of membership
of ey(k—sj+1) in F.

Let us assume in this paper that

Zl E(D > 0 and &(B =0 fori=1,2,1

for all £ Each linear

equation represented by linear discrete

consequent

notation F; e, (k) is called 'subsystem of
the error generator’.

In conclusion, the fuzzy system given as
(19) is the fuzzy representation of the
nonlinear time-invariant characteristic
which is evolved by the error generator.
This fuzzy model is important in two
aspects. First, it is used as the base
model of the fuzzy control system which
regulate the

generates the input to

output of the error generator. Second, it
is used to prove the global asymptotic

stability for the fuzzy control system.

3.2.2 Design of a fuzzy controller to
stabilize the output of the error
generator

The fuzzy system identified as (19)

presents the nonlinear time-invariant

characteristic which is evolved by the
error generator. Thus if a fuzzy controller
is designed and a regulation input is
obtained so that the output e;(k+1) of
(19) converges to zero in steady state,
could be
To do

this, let consider a fuzzy control system

the overall control system

controlled in a stable fashion.

described as Fig. 6.

Since the design purpose of the fuzzy
controller is to make the output of the
error generator converge to zero in steady
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state, an external input to the error
generator is assumed to be zero. That is,

the regulation problem of a free fuzzy

system is considered. If an ith control

rule is assumed to act only on the same ¢

th rule of the fuzzy system, the following
control rules are used in this paper.

Fuzzy u;(@ Fuzzy System | ei(4+1)
Controller - for >
*| Error Generator
Delay
e (k)

Fig. 6 A fuzzy control system to regulate the
error generator

Control rule i:
IFe (k) is Any and - and e, (k— m~+1) is Any

THEN w{(B=~Ke (k) i=1,2,,1 (20)

where K, is a proportional feedback gain
for the control rule i and "Any’ is a
fuzzy set whose membership function
Amyle( -)} is 1.0 for all e (-). This type
of proportional controller is known as a
special case of a fuzzy proportional
controller.

In order to compose a fuzzy control
system, each control rule given as (20) is
combined into the corresponding
subsystem given as (18) for the same :.
Thus the

control system is expressed as

ith subsystem of the fuzzy

Control subsystem i : '
IF e)(k) isF} and-+-and e\ (k—m+1) isF,,

THEN ei(k—%'l) = (F;— B, K, e (k.(21)

The resultant of the
control system can be obtained as follows.

output fuzzy

(953)

Z 51'(/?) T; el(k)
e (k+1) = —= (22)
Zl &k

where Tz' = Fl'fB,'K,u

Since the number of control subsystems
to the
subsystems of the error generator, that is

i=1,2,~, 4, the stability analysis of the
fuzzy control

corresponds number of fuzzy

system 1is quite simple.
This type of rule has the characteristic
that the control input ui(k is applied
directly to the corresponding subsystem
premise

regardless of parameter

condition. Therefore, the resultant fuzzy
u{k) must be calculated
method that

subsystem controlled by the control «}(&)

control input

using the same each

participates in the resultant output of
the fuzzy control system with the weight
Ez(k) That iS.

TeBun BB K

NP 2648

In conclusion, the design problem of the

ulk)=

fuzzy controller is to decide the feedback
gains K; to stabilize the given fuzzy
system, or in other words, to decide the
fuzzy control input u£%) in order to make
the output of the

converge to zero in steady state.

error generator

3.3 A New Control Structure Named Model Reference
Adaptive Fuzzy Control (MRAFC) System

3.3.1 The structure of MRAFC system

Fig. 7 shows the overall control system
that the fuzzy control system is combined
with the MRAC system in order to control
the given nonlinear time-invariant plant.
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={ Reference Model jﬁ —u(d)
| T |
' B e i
g R
Ui 5 A P Generator ] !
Rt |
LSl LE o g LDdw
! i ; uf(k) Fuzzy - ! \ X210
| ; Controller %L(EH
Lo e (k) &
| : !
:; Unknown
r(1) : Nonlinear D
Time-invariant
Plant y
] A,1
(1)
‘@: I o)

: signal actually used for control
: signal not used for control

Fig. 7 The structure of the Model Reference Adaptive Fuzzy Control (MRAFC)system

From Fig. 7 the total control input u«,(9
can be obtained by adding the additional
uld the
controller to the control input «(# from
the MRAC, that is,

control input from fuzzy

u(f) = w(®) + ufd (24)

uld) = uik) - 4T

where 47 is the sampling period for the
fuzzy control system.

It is more useful and exact to use the
actual output error e;(# than to use the
The
expressed by the dashed line —- in Fig.

error generator output. signals
7 are not used actually for control action
but used only for developing the fuzzy
control system discussed in the previous
section. The fuzzy model for the error
generator is used as a basic mathematical

model when the stability for the fuzzy

If the
nonlinear time-invariant characteristic of

control system is analyzed.
the given plant is modeled exactly as a
fuzzy error generator and if the stability
of the fuzzy control system is proved, the
nonlinear time-invariant plant could be

controlled with global stability.

3.3.2 The stability analysis of the MRAFC
system

The fuzzy control system in the MRAC
structure regulates the error generator
which is represented as a fuzzy model
and is assumed to generate the nonlinear
time-invariant characteristic of the plant.
Thus it is very important to prove the
global asymptotic stability of the fuzzy
control system.

Theorem 3.1
The equilibrium of a fuzzy free system

(954)
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of (19 ufk) =0 s

asymptotically stable if there exists a

when globally

common positive definite matrix P for all
the subsystems such that

FIPF, — P<0 for i=1,2,~,0 (25

Theorem 3.2

The equilibrium of a fuzzy control
system expressed as (22) is globally
asymptotically stable if there exists a
common positive definite matrix P for all

subsystems such that

TIPT, — P<J (26)

where i=1,2,-, 1.

Proof. The proof follows directly from
the theorem 3.1 if the feedback matrices

K,(i=1,2,--,1) are selected such that
all the resultant matrices T; of the fuzzy
control system satisfy the condition (26)

for a common positive matrix P.

Therefore, as long as T, satisfy the

condition (26), the fuzzy control system
(22) to regulate the error generator is
always globally asymptotically stable.

Theorem 3.3

The equilibrium state of the standard
MRAC system is globally asymptotically
stable along the trajectories (9) and (11),
if the fuzzy control system of the MRAFC
structure satisfies the theorem 3.2 under
the assumptions 3.1 and 3.3.

Proof. If the assumptions 3.1 and 3.3
are satisfied, we can write the output
error e(? as

(955)

eil(d) = ea(H + eld). (27)

Then the output error in steady state
can be expressed as

&1_1}310 el(t) = lfgglo [elA(l‘) + elN(l‘)]

= lim eja(8) + lim e d) (28)

It was assumed that the error generator

is modeled as a fuzzy model using
input/output data in steady state and it
also generates the steady state error
which is caused by the nonlinear
time-invariant characteristic. Thus, if the
fuzzy control system is asymptotically

stable, then

ltLrglo e(d =0 and

lim e =0. (29)

Therefore, the following result can be
obtained from (28).

lim e)4(#) = lim (Yor. = ¥m) =0 (30)
This means the bounded condition

{‘Lr?of()t!elf;(r)ldr < o (31)

because the
unboundedness of the limit (31)
contradicts (30). From (30) and (31), the
output error ejs(H of the MRAC for the

linear time-invariant subsystem belongs

must  be satisfied

to L'NL” and hence it is uniformly
bounded'®. Since W,(s) in (10) is a stable

matrix and hence e(?d and ¢7(D) w(2)

grow at the same rate’™, ¢7(d () is also
uniformly bounded. These mean that all
the signals in the standard MRAC are
bounded.

Therefore, the adaptive law given as (11)

bounded as long as v, Iis
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holds true and the equilibrium state of
the MRAC system along (9) and (11) is
globally asymptotically stable.

In fact, e($ is used instead of e(d
which cannot actually be separated from
e in Fig. 7. all the

internal signals of the MRAC are also

Nevertheless,

bounded as long as e (® is bounded and

converges asymptotically to zero.
In conclusion, if the error generator is
model with

identified as a fuzzy

confidence and the feedback matrices K;

are decided so that the fuzzy control
system is globally asymptotically stable,
the overall MRAFC system is globally
asymptotically stable and it can control

the given unstable nonlinear time-
invariant plant.

4. Simulations
In this chapter. two simple plant

models are adopted in order to test and
to verify the control performance and the
efficiency of the suggested MRAFC

structure.

4.1 Simulation 1

A plant to be controlled is expressed as

the following unstable nonlinear

differential equation with a bounded

disturbance.

plant © y,=v,+0.5¥5+ s+ utv
y(0) =1, y, 00 =0

disturbance : v=0.5sint+ e; cos2t+0.5¢% cos ¢

In order to acquire input/output data
from the MRAC system for the
identification, the standard MRAC must

(956)

be applied to the given plant under the
assumption that the given plant is linear
A reference model was
satisfy SPR
condition since the relative degree of the

time-invariant.
conveniently chosen to
given plant is #"=1. To analyze the
MRAC system,

signals was used. The unit step function

two Kkinds of reference

was used to analyze the transient
response and the sinusoidal function with
two distinct frequencies was used to

analyze the tracking performance.

—Vmt 7, ¥.(0) =0
r=uy(t)

reference model : y,, =
unit step reference input

sinusoidal reference input : »= cost+
5cosht

Input/output data were acquired for the
MRAC system when the given sinusoidal
input as the reference input was used.

unit step responses

time(sec)

Fig. 8 presents the unit step responses of the given
plant, the reference model and the MRAC system.

Fig. 9 shows the time responses of the
given plant, the reference model and the
MRAC system for the sinusocidal input
which is persistently excited. According
to the Fig. 8 and Fig. 9, the outputs of
the standard MRAC system cannot follow
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those of the reference model but they are
bounded within a certain limit. Since the
plant output is bounded by the MRAC in
spite of the unstable plant, it is possible
to acquire input/output data from the
plant in the MRAC system so as to
identify an error generator.

—plant
reference
RAC

sinusoidal responses
N

time(sec)

Fig. 9 Output comparison for the persistently
excited sinusoidal input

-2 L L L I L
(a) el(k) and el(k-l—l)

(b) Ael(k)

10 > L L L L L
0 2.5 5 75 10 125 15
time(sec)

(c) u(k)

Fig. 10 Input/output data used for the
identification of an error generator

(957)

Fig. 10 shows the data that are used for
the identification of the error generator
as a fuzzy model when the sinusocidal
reference input is used. The sampling
period 4T=0.1 second was used.

Using the data ek, de(k) (=
[e(B—e (5—1DV/AT), w(k) and elk+1)
acquired from the MRAC, Takaki and
Sugeno’s fuzzy model for the error
generator was identified according to the
procedure presented in Fig. 5. Although
five fuzzy models dependent upon the
partitions of the input spaces for the
e)(k) and de(k) were identified, the
following simple model was chosen as the
identification model for the
which has the
performance index defined as the root

resultant

error generator, least

mean square of the output errors.

Rule 1: IF e/(k) is g

-1.0 2.5
THEN ej(£+1)=0.9988 ¢,(A +0.0096 de(k)

+0.009 «} (k)
=1.0948 ¢,(B-0.096 e;(k—1) +0.009 2} (k)

Rule 2 : IF e/ (k) is 4]

-1.0 2.5
e(k+1)=0.997 e;(k) +0.0109 de (k)

-0.013 «2(k)
=1.106 ¢,(h-0.109 e,(k—1)-0.013 2% (%)

THEN

The feedback matrices for fuzzy control
such that the
damping ratios are nearly 0.7 to regulate

rules were selected
the consequent equations of the above
fuzzy subsystems, that is,
Kl = [210 229] and Kz:[_12_0 ‘1564]

Therefore, the resultant fuzzy control
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input can be calculated by using (23).
The additional control input from the

fuzzy controller which is added to the

control input from the MRAC, can be
calculated by (24).
1.5
—- reference
— MRAFC
. 1
2
5
&
2 g5 L
g
w
."E‘
>
0
05
0 3 6 9 12 15
time(sec)
Fig. 11 Output comparison for the unit step
reference input
3
- reference
— MRAFC
2 L
3
2
o
a9
8
©
kel
2ol
=1
£
@
-1
-2
0 3 6 9 12 15

time(sec)

Fig. 12 Output comparison for the persistently
excited sinusoidal input

Fig. 11 and Fig. 12 show the transient
suggested MRAFC
system which are compared with those of

responses of the

the reference model for the step input
and the persistently excited sinusoidal
input, respectively. As can be seen, they
follow the outputs of the reference model
very well and thus exhibit good tracking

(958)

and steady state behavior even if the
given plant has a highly nonlinear
characteristic.

It is necessary to check whether the
overall control system is stable or not.
This is performed through demonstrating

the asymptotic stability of the fuzzy

control system. For the following
matrices T, and T, of the fuzzy control
subsystems, if le[o'?% _06302]'

7,=[ 0850 ~0.312

. ] a positive definite

0
matrix P:[%Sl '11] is selected, then the
condition (26) is always
i=1,2. Therefore, the

system is asymptotically stable and thus
the MRAFC
asymptotically stable.

satisfied for
fuzzy control

system is globally

In conclusion, the proposed method can
be applied to control unstable nonlinear
plants with global asymptotic stability,
as long as some assumptions in section
3.1 are satisfied.

42 Simulation 2

A simulation was accomplished on an

unstable nonlinear time-varying plant
with the following mathematical model.
The same reference model was adopted
and the same disturbance was used as in
simulation 1.

Plant : y,= y,+ (2.0+ cos )y3+ u+u+tv

yp(o) =1, y‘p(o) =0

Fig. 13 and Fig.
time responses of the given plant and the
MRAC that of the
reference model for the unit step input

14 demonstrate the

compared with
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and sinusoidal input, respectively. As
can be seen, the plant outputs diverge to
infinity because it 1is unstable. The
outputs of the MRAC do not follow those
of the reference model but remain within
finite limits. Therefore, it is possible to
apply the suggested method to control
the given plant.

—plant
— reference
—MRAC

unit step responses

s} 3 6 9 12 15
time(sec)

Fig. 13 Output comparison for the unit step
reference input

5
— plant
4 - reference
—-MRAC
3 i
0
[
g 2
=}
&
3 1
g or
2
g
0
-2
-3
-4

time(sec)

Fig. 14 Output comparison for the persistently
excited sinusoidal input

The following fuzzy model is an error
model which is assumed to evolve the
bounded
characteristic of the given plant.

nonlinear time-varying
It was

identified using the data obtained from

(959)

the output error of Fig. 14.

IF e, (k) is k

-3.5 8.0
THEN ej(k+1) =1.002 ¢, (k) +0.009 de, (k)

+0.01 2}(k)
=1.092 ¢,(H-0.09 e;(£—1)+0.01 u: (k)

IF de,(B) is A

-3.5 8.0
THEN & (k+1) =1.001¢,(k)+0.01 de, (&)
-0.002 #2(k)
=1.101 e/(A-0.1 e;(k—1)-0.002 5(%)

Rule 1

Rule 2 :

In order to regulate the above fuzzy

subsystems, the feedback matrices K,

and K, are selected as K, = [19.0 21.9]

and K; = [—57.0 —112.0]. The resultant

matrices T, and Ty of the fuzzy control

subsystems are given as

T1:[0.f1902 _0(5309]’ T2:[0.51987 0.324]'

For these system matrices if a positive
definite matrix P = [ 2_51 _% ] is selected,

the asymptotic stability condition (26) is
always satisfied for i=1,2. Therefore,
since the fuzzy control system for the
error generator is asymptotically stable,
the overall MRAFC system is globally
asymptotically stable.

Fig. 15 and Fig. 16 present the time
MRAFC
compared with those of the reference
model. As
response and the tracking performance
are enhanced that the MRAFC can follow
Even though the
given system is a nonlinear time-varying

responses of the system

expected, the transient

the reference model.
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plant, the responses of the MRAFC are
nearly equal to those of the nonlinear
plant in simulation 1.

concluded that the
can be

Therefore, it is
MRAFC

control

structure applied to

unknown unstable nonlinear

time-varying plants if only an error
model is identified correctly and a fuzzy

control system is asymptotically stable.

- reference
— MRAFC

unit step responses

time(sec}

Fig. 15 Output comparison for the unit step
reference input

reference
~—MRAFC

sinusoidal responses

2 . o .

0 3 6 9 12 15
time(sec)

Fig. 16 Output comparison for the persistently
excited sinusoidal input

5. Conclusion

A new adaptive control theory was

developed for unstable nonlinear time-

(960)

invariant plants such that a fuzzy control
system is combined with the standard
model reference adaptive control theory.
The fuzzy control system was used to
compensate the nonlinear time-invariant
characteristic of the given plant which is
assumed be the output of an error
generator. To achieve this purpose, the
fuzzy identification method was adopted
and the additional

generated such that the output of the

control input was
identified error generator converges to
zero asymptotically.

By means of the simulation results, it
was verified that the suggested MRAFC
could improve the transient response of

the given unstable nonlinear and/or
time-invariant plant with global
asymptotic stability. That 1is, the

transient and steady state output of the
MRAFC system followed that of the
reference model quite well.

Although it may not easy to carry out
the identification procedure for the fuzzy
model of an error generator, nevertheless,
if the with the
performance index is identified, the given

fuzzy model lowest,
system can be easily controlled by using

the well-known linear control theory.
Also, since the identification procedure is
does not

carried out in off-line, it

increase the computational burden.
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