• Title/Summary/Keyword: Vacuum Glass

Search Result 758, Processing Time 0.027 seconds

A Study of Mo Back Electrode for CIGSe2 Thin Film Solar Cell (CIGSe2 박막태양전지용 Mo 하부전극의 물리·전기적 특성 연구)

  • Choi, Seung-Hoon;Park, Joong-Jin;Yun, Jeong-Oh;Hong, Young-Ho;Kim, In-Soo
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.3
    • /
    • pp.142-150
    • /
    • 2012
  • In this Study, Mo back electrode were deposited as the functions of various working pressure, deposition time and plasma per-treatment on sodalime glass (SLG) for application to CIGS thin film solar cell using by DC sputtering method, and were analyzed Mo change to $MoSe_2$ layer through selenization processes. And finally Mo back electrode characteristics were evaluated as application to CIGS device after Al/AZO/ZnO/CdS/CIGS/Mo/SLG fabrication. Mo films fabricated as a function of the working pressure from 1.3 to 4.9mTorr are that physical thickness changed to increase from 1.24 to 1.27 ${\mu}m$ and electrical characteristics of sheet resistance changed to increase from 0.195 to 0.242 ${\Omega}/sq$ as according to the higher working pressure. We could find out that Mo film have more dense in lower working pressure because positive Ar ions have higher energy in lower pressure when ions impact to Mo target, and have dominated (100) columnar structure without working pressure. Also Mo films fabricated as a function of the deposition time are that physical thickness changed to increase from 0.15 to 1.24 ${\mu}m$ and electrical characteristics of sheet resistance changed to decrease from 2.75 to 0.195 ${\Omega}/sq$ as according to the increasing of deposition time. This is reasonable because more thick metal film have better electrical characteristics. We investigated Mo change to $MoSe_2$ layer through selenization processes after Se/Mo/SLG fabrication as a function of the selenization time from 5 to 40 minutes. $MoSe_2$ thickness were changed to increase as according to the increasing of selenization time. We could find out that we have to control $MoSe_2$ thickness to get ohmic contact characteristics as controlling of proper selenization time. And we fabricated and evaluated CIGS thin film solar cell device as Al/AZO/ZnO/CdS/CIGS/Mo/SLG structures depend on Mo thickness 1.2 ${\mu}m$ and 0.6 ${\mu}m$. The efficiency of CIGS device with 0.6 ${\mu}m$ Mo thickness is batter as 9.46% because Na ion of SLG can move to CIGS layer more faster through thin Mo layer. The adhesion characteristics of Mo back electrode on SLG were improved better as plasma pre-treatment on SLG substrate before Mo deposition. And we could expect better efficiency of CIGS thin film solar cell as controlling of Mo thickness and $MoSe_2$ thickness depend on Na effect and selenization time.

Physical Properties of Cd2GeSe4 and Cd2GeSe4:Co2+ Thin Films Grown by Thermal Evaporation (진공증착법에 의해 제작된 Cd2GeSe4와 Cd2GeSe4:Co2+ 박막의 물리적 특성)

  • Lee, Jeoung-Ju;Sung, Byeong-Hoon;Lee, Jong-Duk;Park, Chang-Young;Kim, Kun-Ho
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.6
    • /
    • pp.459-467
    • /
    • 2009
  • $Cd_2GeSe_4$ and $Cd_2GeSe_4:Co^{2+}$ films were prepared on indium-tin-oxide(ITO)-coated glass substrates by using thermal evaporation. The crystallization was achieved by annealing the as-deposited films in flowing nitrogen. X-ray diffraction spectra showed that the $Cd_2GeSe_4$ and the $Cd_2GeSe_4:Co^{2+}$ films were preferentially grown along the (113) orientation. The crystal structure was rhomohedral(hexagonal) with lattice constants of $a=7.405\;{\AA}$ and $c=36.240\;{\AA}$ for $Cd_2GeSe_4$ and $a=7.43\;{\AA}$ and $c=36.81\;{\AA}$ for $Cd_2GeSe_4:Co^{2+}$ films. From the scanning electron microscope images, the $Cd_2GeSe_4$ and $Cd_2GeSe_4:Co^{2+}$ films were plated, and the grain size increased with increasing annealing temperature. The optical energy band gap, measured at room temperature, of the as-deposited $Cd_2GeSe_4$ films was 1.70 eV and increased to about 1.74 eV and of the as-deposited $Cd_2GeSe_4:Co^{2+}$ films was 1.79 eV and decreased to about 1.74 eV upon annealing in flowing nitrogen at temperatures from $200^{\circ}C$ to $500^{\circ}C$. The dynamical behavior of the charge carriers in the $Cd_2GeSe_4$ and $Cd_2GeSe_4:Co^{2+}$ films were investigated by using the photoinduced discharge characteristics technique.

Exact Solutions of Plasma Diffusion in a Fine Tube Positive Column Discharge (세관 양광주 방전에서 플라즈마 확산의 완전 해)

  • Jin, D.J.;Jeong, J.M.;Kim, J.H.;Hwang, H.C.;Chung, J.Y.;Cho, Y.H.;Lim, H.K.;Koo, J.H.;Choi, E.H.;Cho, G.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.1
    • /
    • pp.36-44
    • /
    • 2010
  • The ambipolar diffusion equation has been solved in a fine-tube lamp of a few mm in diameter. In the diffusion of radial direction, the plasma diffuses and vanishes away at the glass wall by recombination with the characteristic time of plasma loss is given by $\tau_r\;=\;(r_0/2.4)^2/D_a$. With the radius $r_0{\sim}1\;mm$ and the ambipolar diffusion coefficient $D_a{\sim}0.01\;m^2/s$, the vanishing time is calculated $\tau_r{\sim}10\;{\mu}s$ which corresponds to the least value of frequency 30 kHz for the sustaining the plasma in the operation of high voltage AC-power. In the diffusion of longitudinal z-direction, a high density plasma generated at the area of a high voltage electrode, diffuses into the positive column with the characteristic time $\tau_z{\sim}0.1\;s$. The plasma diffusion velocity at the boundary of high density plasma is $u_D{\sim}10^2\;m/s$ at the time $t{\sim}10^{-6}$ s and the diffusion velocity becomes slow as $u_D{\sim}1\;m/s$ at $t{\sim}10^{-3}\;s$. Therefore, for the long lamp of 1 m, it takes about several seconds for the high density plasma at the area of electrode to diffuse through the whole positive column space.

Properties of Indium Tin Oxide Thin Films According to Oxygen Flow Rates by γ-FIB System (γ-FIB 시스템을 이용한 산소 유량 변화에 따른 산화인듐주석 박막의 특성 연구)

  • Kim, D.H.;Son, C.H.;Yun, M.S.;Lee, K.A.;Jo, T.H.;Seo, I.W.;Uhm, H.S.;Kim, I.T.;Choi, E.H.;Cho, G.S.;Kwon, G.C.
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.6
    • /
    • pp.333-341
    • /
    • 2012
  • Indium Tin Oxide (ITO) thin films were prepared by RF magnetron sputtering with different flow rates of $O_2$ gas from 0 to 12 sccm. Electrical and optical properties of these films were characterized and analyzed. ITO deposited on soda lime glass and RF power was 2 kW, frequency was 13.56 MHz, and working pressure was $1.0{\times}10^{-3}$ Torr, Ar gas was fixed at 1,000 sccm. The transmittance was measured at 300~1,100 nm ranges by using Photovoltaic analysis system. Electrical properties were measured by Hall measurement system. ITO thin films surface were measured by Scanning electron microscope. Atomic force microscope surface roughness scan for ITO thin films. ITO thin films secondary electron emission coefficient(${\gamma}$) was measured by ${\gamma}$-Focused ion beam. The resistivity is about $2.4{\times}10^{-4}{\Omega}{\cdot}cm$ and the weighted average transmittance is about 84.93% at 3 sccm oxygen flow rate. Also, we investigated Work-function of ITO thin films by using Auger neutralization mechanism according to secondary electron emission coefficient(${\gamma}$) values. We confirmed secondary electron emission peak at 3 sccm oxygen flow rate.

New Approaches for Overcoming Current Issues of Plasma Sputtering Process During Organic-electronics Device Fabrication: Plasma Damage Free and Room Temperature Process for High Quality Metal Oxide Thin Film

  • Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.100-101
    • /
    • 2012
  • The plasma damage free and room temperature processedthin film deposition technology is essential for realization of various next generation organic microelectronic devices such as flexible AMOLED display, flexible OLED lighting, and organic photovoltaic cells because characteristics of fragile organic materials in the plasma process and low glass transition temperatures (Tg) of polymer substrate. In case of directly deposition of metal oxide thin films (including transparent conductive oxide (TCO) and amorphous oxide semiconductor (AOS)) on the organic layers, plasma damages against to the organic materials is fatal. This damage is believed to be originated mainly from high energy energetic particles during the sputtering process such as negative oxygen ions, reflected neutrals by reflection of plasma background gas at the target surface, sputtered atoms, bulk plasma ions, and secondary electrons. To solve this problem, we developed the NBAS (Neutral Beam Assisted Sputtering) process as a plasma damage free and room temperature processed sputtering technology. As a result, electro-optical properties of NBAS processed ITO thin film showed resistivity of $4.0{\times}10^{-4}{\Omega}{\cdot}m$ and high transmittance (>90% at 550 nm) with nano- crystalline structure at room temperature process. Furthermore, in the experiment result of directly deposition of TCO top anode on the inverted structure OLED cell, it is verified that NBAS TCO deposition process does not damages to the underlying organic layers. In case of deposition of transparent conductive oxide (TCO) thin film on the plastic polymer substrate, the room temperature processed sputtering coating of high quality TCO thin film is required. During the sputtering process with higher density plasma, the energetic particles contribute self supplying of activation & crystallization energy without any additional heating and post-annealing and forminga high quality TCO thin film. However, negative oxygen ions which generated from sputteringtarget surface by electron attachment are accelerated to high energy by induced cathode self-bias. Thus the high energy negative oxygen ions can lead to critical physical bombardment damages to forming oxide thin film and this effect does not recover in room temperature process without post thermal annealing. To salve the inherent limitation of plasma sputtering, we have been developed the Magnetic Field Shielded Sputtering (MFSS) process as the high quality oxide thin film deposition process at room temperature. The MFSS process is effectively eliminate or suppress the negative oxygen ions bombardment damage by the plasma limiter which composed permanent magnet array. As a result, electro-optical properties of MFSS processed ITO thin film (resistivity $3.9{\times}10^{-4}{\Omega}{\cdot}cm$, transmittance 95% at 550 nm) have approachedthose of a high temperature DC magnetron sputtering (DMS) ITO thin film were. Also, AOS (a-IGZO) TFTs fabricated by MFSS process without higher temperature post annealing showed very comparable electrical performance with those by DMS process with $400^{\circ}C$ post annealing. They are important to note that the bombardment of a negative oxygen ion which is accelerated by dc self-bias during rf sputtering could degrade the electrical performance of ITO electrodes and a-IGZO TFTs. Finally, we found that reduction of damage from the high energy negative oxygen ions bombardment drives improvement of crystalline structure in the ITO thin film and suppression of the sub-gab states in a-IGZO semiconductor thin film. For realization of organic flexible electronic devices based on plastic substrates, gas barrier coatings are required to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency flexible AMOLEDs needs an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}gm^{-2}day^{-1}$. The key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required (under ${\sim}10^{-6}gm^{-2}day^{-1}$) is the suppression of nano-sized defect sites and gas diffusion pathways among the grain boundaries. For formation of high quality single inorganic gas barrier layer, we developed high density nano-structured Al2O3 single gas barrier layer usinga NBAS process. The NBAS process can continuously change crystalline structures from an amorphous phase to a nano- crystalline phase with various grain sizes in a single inorganic thin film. As a result, the water vapor transmission rates (WVTR) of the NBAS processed $Al_2O_3$ gas barrier film have improved order of magnitude compared with that of conventional $Al_2O_3$ layers made by the RF magnetron sputteringprocess under the same sputtering conditions; the WVTR of the NBAS processed $Al_2O_3$ gas barrier film was about $5{\times}10^{-6}g/m^2/day$ by just single layer.

  • PDF

Sputtering방식을 이용한 Indium Thin oxide박막의 넓이에 따른 X-ray 검출기 특성 연구

  • Kim, Dae-Guk;Sin, Jeong-Uk;O, Gyeong-Min;Kim, Seong-Heon;Lee, Yeong-Gyu;Jo, Seong-Ho;Nam, Sang-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.321-322
    • /
    • 2012
  • 의료용 방사선 장비는 초기의 아날로그 방식의 필름 및 카세트에서 진보되어 현재는 디지털 방식의 DR (Digital Radiography)이 널리 사용되며 그에 관한 연구개발이 활발히 진행되고 있다. DR은 크게 간접방식과 직접방식의 두 분류로 나눌 수 있는데, 간접방식은 X선을 흡수하면 가시광선으로 전환하는 형광체(Scintillator)를 사용하여 X선을 가시광선으로 전환하고, 이를 Photodiode와 같은 광소자로 전기적 신호로 변환하여 방사선을 검출하는 방식을 말하며, 직접 방식은 X선을 흡수하면 전기적 신호를 발생 시키는 광도전체(Photoconductor)를 사용하여 광도전체 양단 전극에 고전압을 인가한 형태를 취하고 있는 가운데, X선이 조사되면 일차적으로 광도전체 내부에서 전자-전공쌍(Electron-hole pair)이 생성된다. 이들은 광도전체 양단의 인가되어 있는 전기장에 의해 전자는 +극으로, 전공은 -극으로 이동하여 아래에 위치한 Active matrix array을 통해 방사선을 검출하는 방식이다. 본 연구에서는 직접방식 X-ray 검출기에서 활용되는 a-Se을 ITO (Indium Thin oxide) glass 상단에 Thermal evaporation증착을 이용하여 두께 $50{\mu}m$, 33 넓이로 증착 시킨 다음, a-Se상단에 Sputtering증착을 이용하여 ITO를 11 cm, 22 cm, $2.7{\times}2.7cm$ 넓이로 증착시켜 상하부의 ITO를 Electrode로 이용하여 직접방식의 X-ray검출기 샘플을 제작하였다. 제작 과정 중 a-Se의 Thermal evaporation증착 시, 저진공 $310^{-3}_{Torr}$, 고진공 $2.210^{-5}_{Torr}$에서 보트의 가열 온도를 두 번의 스텝으로 나누어 증착 시켰다. 첫 번째 스텝 $250^{\circ}C$, 두 번째 스텝은 $260^{\circ}C$의 조건으로 증착하여 보트 내의 a-Se을 남기지 않고 전량을 소모할 수 있었으며, 스텝간의 온도차를 $10^{\circ}C$로 제어하여 균일한 박막을 형성 할 수 있었다. Sputtering증착 시, 저진공 $2.510^{-3}$, 고진공 $310^{-5}$에서 Ar, $O_2$를 사용하여 100 Sec간 플라즈마를 생성시켜 ITO를 증착하였다. 제작된 방사선 각각의 검출기 샘플 양단의 ITO에 500V의 전압을 인가하고, 진단 방사선 범위의 70 kVp, 100 mA, 0.03 sec 조건으로 X-ray를 조사시켜 ITO넓이에 따른 민감도(Sensitivity)와 암전류(Dark current)를 측정하였다. 측정결과 민감도(Sensitivity)는 X-ray샘플의 두께에 따른 $1V/{\mu}m$ 기준 시, 증착된 ITO의 넓이가 11 cm부터 22 cm, $2.7{\times}2.7cm$까지 각각 $7.610nC/cm^2$, $8.169nC/cm^2$, $6.769nC/cm^2$로 22 cm 넓이의 샘플이 가장 높은 민감도를 나타내었으나, 암전류(Dark current)는 $1.68nA/cm^2$, $3.132nA/cm^2$, $5.117nA/cm^2$로 11 cm 넓이의 샘플이 가장 낮은 값을 나타내었다. 이러한 데이터를 SNR (Signal to Noise Ratio)로 합산 하였을 시 104.359 ($1{\times}1$), 60.376($2{\times}2$), 30.621 ($2.7{\times}2.7$)로 11 cm 샘플이 신호 대 별 가장 우수한 효율을 나타냄을 알 수 있었다. 따라서 ITO박막의 면적이 클수록 민감도는 우수하나 그에 따른 암전류의 증가로 효율이 떨어짐을 검증 할 수 있었으며, 이는 ITO면적이 넓어짐에 따른 저항의 증가로 암전류에 영향을 끼침을 할 수 있었다. 본 연구를 통해 a-Se의 ITO 박막 면적에 따른 전기적 특성을 검증할 수 있었다.

  • PDF

Air Sampling and Isotope Analyses of Water Vapor and CO2 using Multi-Level Profile System (다중연직농도시스템(Multi-Level Profile System)을 이용한 수증기와 이산화탄소 시료채취 및 안정동위원소 조성 분석)

  • Lee, Dong-Ho;Kim, Su-Jin;Cheon, Jung-Hwa;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.4
    • /
    • pp.277-288
    • /
    • 2010
  • The multi-level $H_2O/CO_2$ profile system has been widely used to quantify the storage and advection effects on energy and mass fluxes measured by eddy covariance systems. In this study, we expanded the utility of the profile system by accommodating air sampling devices for isotope analyses of water vapor and $CO_2$. A pre-evacuated 2L glass flask was connected to the discharge of an Infrared Gas Analyzer (IRGA) of the profile system so that airs with known concentration of $H_2O$ and $CO_2$ can be sampled. To test the performance of this sampling system, we sampled airs from 8 levels (from 0.1 to 40 m) at the KoFlux tower of Gwangneung deciduous forest, Korea. Air samples in the 2L flask were separated into its component gases and pure $H_2O$ and $CO_2$ were extracted by using a vacuum extraction line. This novel technique successfully produced vertical profiles of ${\delta}D$ of $H_2O$ and ${\delta}^{13}C$ of $CO_2$ in a mature forest, and estimated ${\delta}D$ of evapotranspiration (${\delta}D_{ET}$) and ${\delta}^{13}C$ of $CO_2$ from ecosystem respiration (${\delta}^{13}C_{resp}$) by using Keeling plots. While technical improvement is still required in various aspects, our sampling system has two major advantages over other proposed techniques. First, it is cost effective since our system uses the existing structure of the profile system. Second, both $CO_2$ and $H_2O$ can be sampled simultaneously so that net ecosystem exchange of $H_2O$ and $CO_2$ can be partitioned at the same temporal resolution, which will improve our understanding of the coupling between water and carbon cycles in terrestrial ecosystems.

Nanoscale Pattern Formation of Li2CO3 for Lithium-Ion Battery Anode Material by Pattern Transfer Printing (패턴전사 프린팅을 활용한 리튬이온 배터리 양극 기초소재 Li2CO3의 나노스케일 패턴화 방법)

  • Kang, Young Lim;Park, Tae Wan;Park, Eun-Soo;Lee, Junghoon;Wang, Jei-Pil;Park, Woon Ik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.83-89
    • /
    • 2020
  • For the past few decades, as part of efforts to protect the environment where fossil fuels, which have been a key energy resource for mankind, are becoming increasingly depleted and pollution due to industrial development, ecofriendly secondary batteries, hydrogen generating energy devices, energy storage systems, and many other new energy technologies are being developed. Among them, the lithium-ion battery (LIB) is considered to be a next-generation energy device suitable for application as a large-capacity battery and capable of industrial application due to its high energy density and long lifespan. However, considering the growing battery market such as eco-friendly electric vehicles and drones, it is expected that a large amount of battery waste will spill out from some point due to the end of life. In order to prepare for this situation, development of a process for recovering lithium and various valuable metals from waste batteries is required, and at the same time, a plan to recycle them is socially required. In this study, we introduce a nanoscale pattern transfer printing (NTP) process of Li2CO3, a representative anode material for lithium ion batteries, one of the strategic materials for recycling waste batteries. First, Li2CO3 powder was formed by pressing in a vacuum, and a 3-inch sputter target for very pure Li2CO3 thin film deposition was successfully produced through high-temperature sintering. The target was mounted on a sputtering device, and a well-ordered Li2CO3 line pattern with a width of 250 nm was successfully obtained on the Si substrate using the NTP process. In addition, based on the nTP method, the periodic Li2CO3 line patterns were formed on the surfaces of metal, glass, flexible polymer substrates, and even curved goggles. These results are expected to be applied to the thin films of various functional materials used in battery devices in the future, and is also expected to be particularly helpful in improving the performance of lithium-ion battery devices on various substrates.