DOI QR코드

DOI QR Code

A Study of Mo Back Electrode for CIGSe2 Thin Film Solar Cell

CIGSe2 박막태양전지용 Mo 하부전극의 물리·전기적 특성 연구

  • Received : 2012.02.24
  • Accepted : 2012.05.24
  • Published : 2012.05.31

Abstract

In this Study, Mo back electrode were deposited as the functions of various working pressure, deposition time and plasma per-treatment on sodalime glass (SLG) for application to CIGS thin film solar cell using by DC sputtering method, and were analyzed Mo change to $MoSe_2$ layer through selenization processes. And finally Mo back electrode characteristics were evaluated as application to CIGS device after Al/AZO/ZnO/CdS/CIGS/Mo/SLG fabrication. Mo films fabricated as a function of the working pressure from 1.3 to 4.9mTorr are that physical thickness changed to increase from 1.24 to 1.27 ${\mu}m$ and electrical characteristics of sheet resistance changed to increase from 0.195 to 0.242 ${\Omega}/sq$ as according to the higher working pressure. We could find out that Mo film have more dense in lower working pressure because positive Ar ions have higher energy in lower pressure when ions impact to Mo target, and have dominated (100) columnar structure without working pressure. Also Mo films fabricated as a function of the deposition time are that physical thickness changed to increase from 0.15 to 1.24 ${\mu}m$ and electrical characteristics of sheet resistance changed to decrease from 2.75 to 0.195 ${\Omega}/sq$ as according to the increasing of deposition time. This is reasonable because more thick metal film have better electrical characteristics. We investigated Mo change to $MoSe_2$ layer through selenization processes after Se/Mo/SLG fabrication as a function of the selenization time from 5 to 40 minutes. $MoSe_2$ thickness were changed to increase as according to the increasing of selenization time. We could find out that we have to control $MoSe_2$ thickness to get ohmic contact characteristics as controlling of proper selenization time. And we fabricated and evaluated CIGS thin film solar cell device as Al/AZO/ZnO/CdS/CIGS/Mo/SLG structures depend on Mo thickness 1.2 ${\mu}m$ and 0.6 ${\mu}m$. The efficiency of CIGS device with 0.6 ${\mu}m$ Mo thickness is batter as 9.46% because Na ion of SLG can move to CIGS layer more faster through thin Mo layer. The adhesion characteristics of Mo back electrode on SLG were improved better as plasma pre-treatment on SLG substrate before Mo deposition. And we could expect better efficiency of CIGS thin film solar cell as controlling of Mo thickness and $MoSe_2$ thickness depend on Na effect and selenization time.

CIGS 박막 태양전지 기판소재인 소다라임유리 표면에 플라즈마 전처리 후 DC 마그네트론 스퍼터링 방법으로 Mo 박막을 제조하였다. 증착압력과 증착시간 변화에 따른 Mo 박막의 물리적, 전기적 특성을 분석하였고, 셀렌화 처리 조건에 따른 $MoSe_2$ 생성 여부와 경향성을 연구하였으며, Mo 박막 두께에 따른 AZO/i-ZnO/CdS/CIGS/Mo/SLG 구조의 태양전지를 제조하여 그 특성을 분석 및 평가하였다. 증착압력이 4.9 mTorr에서 1.3 mTorr로 감소할수록 치밀하고 결정입자 사이의 공극이 적고, 증착속도가 감소하고 전기저항도가 낮은 Mo 박막이 증착되었다. 증착온도가 상온에서 $200^{\circ}C$로 증가할수록 Mo 박막은 치밀한 구조를 가지고 결정성은 향상되어 면저항이 낮게 나타났다. 셀렌화 시간이 길어질수록 Mo 박막 층은 줄어들고, $MoSe_2$ 층 생성두께가 커지는 것을 알 수 있었고, 열처리로 인해 결정화 되면서 전체 박막의 두께가 줄어들었으며, $MoSe_2$ 층의 배양성은 c축이 Mo 표면과 수직 방향으로 성장된 것을 알 수 있었다. Mo 박막의 두께가 1.2 ${\mu}m$와 0.6 ${\mu}m$인 AZO/i-ZnO/CdS/CIGS/Mo/SLG 구조로 이루어진 CIGS 박막 태양전지를 제조하였다. Mo 박막의 두께가 1.2 ${\mu}m$일 때 보다 0.6 ${\mu}m$일 때 CIGS 박막 태양전지의 변환 효율은 9.46%로 비교적 우수한 특성을 나타났다. CIGS 박막 태양전지에서 하부전극인 Mo 박막 특성은 유리기판 및 광흡수 층과의 계면 형성 따라 큰 영향을 미친다는 것을 알 수 있었고, 유리기판의 플라즈마 처리와 Mo 박막의 두께조절로 Na 효과 및 $MoSe_2$층 형성 제어함으로써 CIGS 박막 태양전지의 특성 개선에 효과를 가질 수 있었다.

Keywords

References

  1. H. -W. Schock and F. Pfister, Proceedings of the 16th European Photovoltaic Solar Energy Conference, (James & James, Science Publishers, Glasgow, 2000), pp.270-274.
  2. A. L. Fahrenbruch and R. H. Bube, Fundamentals of Solar Cells (Academic Press, Orlando, 1983).
  3. M. L. Archer and R. Hill. Clean Energy from Photovoltaics (Imperial College Press, 2001).
  4. D. L. Staebler, R. S. Crandall, and R. Williams, Appl. Phys. Lett. 39, 733-735 (1981). https://doi.org/10.1063/1.92865
  5. S. -H. Wei, S. B. Zhang, and A. Zunger, Appl. Phys. Lett. 72, 3199 (1998). https://doi.org/10.1063/1.121548
  6. T. Dullweber, G. Hanna, M. A. Contreras, R. Noufi, and H. W. Schock, Thin Solid Films 478, 361 (2000).
  7. M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, Prog. Photovolt. Res. Appl. 1984 (2011).
  8. S. G. Kim, J. C. Lee, K. H. Yun, K. H. Kang, L. J. Park, J. W. Song, and S. O. Han, Spring Conference Korea Sol. Energy Soc. 181 (2001).
  9. A. Bollero, M. Andres, C. Garcia, J. Abajo, and M. T. Gutierrez, Phys. Status Solidi A 206, 540 (2009). https://doi.org/10.1002/pssa.200824405
  10. J. H. Scofield, A. Duda, D. Albin, B. L. Ballard, and P. K. Predecki, Thin Solid Films 260, 26 (1995). https://doi.org/10.1016/0040-6090(94)06462-8
  11. K. Orgassa, H. W. Schock, and J. H. Werner, Thin Solid Films 431/432, 387 (2003). https://doi.org/10.1016/S0040-6090(03)00257-8
  12. L. Assmann, J. C. Berne'de, A. Drici, C. Amory, E. Halgand, and M. Morsli, Applied Surface Science 246, 159 (2005). https://doi.org/10.1016/j.apsusc.2004.11.020
  13. S. M. Kong, Y. Xiao, E. H. Kim, and C. W. Chung, Korean Chem. Eng. Res. 49, 195 (2011). https://doi.org/10.9713/kcer.2011.49.2.195
  14. I. Repins, S. Glynn, J. Duenow, T. J. Coutts, W. K. Metzger, and A. Miguel, Thin Film Solar Technology. Edited by Delahoy, Alan E.; Eldada, Louay A., Proceedings of the SPIE, 7409, 74090 (2009).

Cited by

  1. Linear Source for Evaporating Large Area CIGS Absorber Layer vol.22, pp.1, 2013, https://doi.org/10.5757/JKVS.2013.22.1.1
  2. Fabrication and Study of Transparent Conductive Films ZnO(Al) and ZnO(AlGa) by DC Magnetron Sputtering vol.22, pp.3, 2013, https://doi.org/10.5757/JKVS.2013.22.3.119