DOI QR코드

DOI QR Code

Properties of Indium Tin Oxide Thin Films According to Oxygen Flow Rates by γ-FIB System

γ-FIB 시스템을 이용한 산소 유량 변화에 따른 산화인듐주석 박막의 특성 연구

  • Kim, D.H. (Department of Electrophysics, Kwangwoon University) ;
  • Son, C.H. (Department of Electrophysics, Kwangwoon University) ;
  • Yun, M.S. (Department of Electrophysics, Kwangwoon University) ;
  • Lee, K.A. (Department of Electrophysics, Kwangwoon University) ;
  • Jo, T.H. (Department of Electrophysics, Kwangwoon University) ;
  • Seo, I.W. (Department of Electrophysics, Kwangwoon University) ;
  • Uhm, H.S. (Department of Electrophysics, Kwangwoon University) ;
  • Kim, I.T. (Department of Chemistry, Kwangwoon University) ;
  • Choi, E.H. (Department of Electrophysics, Kwangwoon University) ;
  • Cho, G.S. (Department of Electrophysics, Kwangwoon University) ;
  • Kwon, G.C. (Department of Electrophysics, Kwangwoon University)
  • Received : 2012.09.19
  • Accepted : 2012.10.28
  • Published : 2012.11.30

Abstract

Indium Tin Oxide (ITO) thin films were prepared by RF magnetron sputtering with different flow rates of $O_2$ gas from 0 to 12 sccm. Electrical and optical properties of these films were characterized and analyzed. ITO deposited on soda lime glass and RF power was 2 kW, frequency was 13.56 MHz, and working pressure was $1.0{\times}10^{-3}$ Torr, Ar gas was fixed at 1,000 sccm. The transmittance was measured at 300~1,100 nm ranges by using Photovoltaic analysis system. Electrical properties were measured by Hall measurement system. ITO thin films surface were measured by Scanning electron microscope. Atomic force microscope surface roughness scan for ITO thin films. ITO thin films secondary electron emission coefficient(${\gamma}$) was measured by ${\gamma}$-Focused ion beam. The resistivity is about $2.4{\times}10^{-4}{\Omega}{\cdot}cm$ and the weighted average transmittance is about 84.93% at 3 sccm oxygen flow rate. Also, we investigated Work-function of ITO thin films by using Auger neutralization mechanism according to secondary electron emission coefficient(${\gamma}$) values. We confirmed secondary electron emission peak at 3 sccm oxygen flow rate.

본 연구는 RF 마그네트론 스퍼터링법을 이용하여 산소유량 변화에 따라 증착된 ITO 박막 구조적, 전기적, 광학적 특성을 분석하였다. ITO (Indium Tin Oxide) 박막은 $1.0{\times}10^{-3}$ Torr의 공정 압력과 2 kW 및 13.56 MHz의 RF 전력, 1,000 sccm의 Ar 가스 조건하에 0~12 sccm의 $O_2$ 가스 유량을 변경하면서 증착하였다. 광투과율 측정은 적분구를 이용하였으며, 측정 파장 범위는 300~1,100 nm이다. 4-point probe를 이용하여 면저항을 측정하였으며, Hall Measurement System을 이용하여 비저항, 캐리어 농도 및 전자이동도를 측정하였다. Scanning electron microscope 장비를 이용하여 ITO 박막 표면을 분석하였고, 박막의 거칠기는 Atomic force microscope을 이용하여 측정하였다. ${\gamma}$-Focused ion beam system을 이용하여 ITO 박막의 이차전자방출계수를 측정하였으며, 이차전자방출계수 값으로 Auger neutralization mechanism 분석법을 이용해 ITO 박막의 일함수를 결정하였다. 3 sccm의 산소 유량에서 증착된 ITO 박막의 비저항은 약 $2.4{\times}10^{-4}{\Omega}{\cdot}cm$로 가장 좋았으며, 광학적 특성 또한 84.93% (Weighted average)로 가장 좋은 것을 확인할 수 있었다. 이 조건에서 이차전자방출 계수가 가장 높았고 일함수는 가장 낮은 경향의 일치함을 확인하였다.

Keywords

References

  1. Y. L. Choi, J. Kor. Inst. Met. Mater. 45, 579 (2007)
  2. C. J. Lee, S. K. Park, J. I. Han, W. K. Kim, and M. G. Kwak, IDMC 2000, 515 (2000).
  3. J. R. Bellingham, A. P. Mackenzie, and W. A. Philips, Appl. Phys. Lett. 58, 2506 (1991). https://doi.org/10.1063/1.104858
  4. J. Y. Song, D. Y. Jeong, C. S. Kim, S. H. Park, J. S. Jo, J. S. Song, J. S. Wang, and J. C. Lee, J. Korean Vac. Soc. 20, 210 (2010).
  5. J. I. Pankove, Display Devices, Topics in Applied Physics (Springer-Verlag, Berlin, 1980), p. 40.
  6. K. Osaza, T. Ye, and Y. Aoyagi, Thin Solid Films 246, 58 (1994). https://doi.org/10.1016/0040-6090(94)90732-3
  7. C. H. Liang, S. C. Chen, X. Qi, C. A. Chen, and C. Yang, Thin Solid Films 519, 345 (2010). https://doi.org/10.1016/j.tsf.2010.07.095
  8. V. A. Dao, H. Choi, J. Heo, H Park, K. Yoon, Y. Lee, Y. Kim, N. Lakshminarayan, and J. Yi, Current Applied Physics 10, S506 (2010). https://doi.org/10.1016/j.cap.2010.02.019
  9. A. Salehi, Thin Solid Films 324, 214 (1998). https://doi.org/10.1016/S0040-6090(98)00371-X
  10. I. A. Rauf, J. Appl. Phys. 79, 4057 (1996). https://doi.org/10.1063/1.361882
  11. M. J. Alam and D. C. Cameron, Thin Solid Films 377-378, 455 (2000). https://doi.org/10.1016/S0040-6090(00)01369-9
  12. C. H. Lee and C. S. Huang, Mater. Sci. Engineering B 22, 233 (1994). https://doi.org/10.1016/0921-5107(94)90250-X
  13. E. Benamar, M. Rami, C. Messaoudi, D. Sayah, and A. Ennaoui, Solar Energy Material and Solar Cells 56, 125 (1998).
  14. E. H. Choi, J. Y. Lim, Y. G. Kim, J. J. Ko, D. I. Kim, C. W. Lee, and G. S. Cho, J. Appl. Phys. 86, 6525 (1999). https://doi.org/10.1063/1.371618
  15. G. Y. Kim, J. S. Oh, E. H. Choi, G. S. Cho, S. U. Kang, and J. W. Cho, J. Korean Vac. Soc. 11, 171 (2002).
  16. H. S. Uhm, J. H. Choi, H. J. Yoo, G. C. Kwon, and E. H. Choi, J. Appl. Phys. 111, 053302 (2012). https://doi.org/10.1063/1.3689848
  17. H. J. Oh, J. W. Hyun, and J. H. Lee, J. Korean Vac. Soc. 12, 16 (2003).
  18. D. Mergel, M. Schenkel, M. Ghebre, and M. Sulkowski, Thin Solid Films 392, 91 (2001). https://doi.org/10.1016/S0040-6090(01)01013-6
  19. D. Mergel, W. Stass, G. Ehl, and D. Barthel, Applied Physics 88, 2437 (2000). https://doi.org/10.1063/1.1287603
  20. D. H. Choi, M. J. Keum, A. R. Jeon, and J. K. Han, J. Korean Surface Soc. 30, 144 (2007).
  21. Y. H. Ko, D. H. Ju, and J. S. Yu, J. Korean Vac. Soc. 21, 99 (2012). https://doi.org/10.5757/JKVS.2012.21.2.99
  22. C. G. Choi, K. No, W.-J. Lee, H.-G. Kim, S. O. Jung, W. J. Lee, W. S. Kim, S. J. Kim, and C. Yoon, Thin Solid Films 258, 274 (1995). https://doi.org/10.1016/0040-6090(94)06354-0
  23. I. Hamberg, C. G. Granqvist, K.-F. Berggren, B. E. Sernelius, and L. Engstrom, Vacuum 35, 207 (1985).
  24. I.-Y. Lee and K.-A. Lee, Optical Soc. of Korea Summer Conference Proceedings 176 (2000).
  25. M. S. Lee, Kumoh National. Inst. of Tech. Thesis for a degree (2010).
  26. M. H. An, Information & Comunication Engineering 10, (2005).
  27. M. Bender, W. Seelig, C. Daube, H. Frankenberger, B. Ocker, and J. Stollenwerk, Thin Solid Films 326, 72 (1998). https://doi.org/10.1016/S0040-6090(98)00521-5
  28. L. Zhao, Z. Zhou, H. Peng, and R. Cui, Appl. Surface Sci. 252, 385 (2005). https://doi.org/10.1016/j.apsusc.2005.01.033
  29. P. Sujatha Devi, M. Chatterjee, and D. Ganguli, Mat. Latt. 55, 205 (2002). https://doi.org/10.1016/S0167-577X(01)00647-4
  30. A. K. Kukkarni, K. H. Schulz, T. S. Lim, and M. Khan, Thin Solid Films 345, 273 (1999). https://doi.org/10.1016/S0040-6090(98)01430-8
  31. S. S. Kim, S. Y. Choi, C. G. Park, and H. W. Jin, Thin Solid Films 347, 155 (1999). https://doi.org/10.1016/S0040-6090(98)01748-9
  32. 이혜정, 손창길, 유나름, 한용규, 정세훈, 이수범, 임정은, 이준호, 송기백, 오필용, 정진만, 고병덕, 문민욱, 박원배, 최은하, 한국전기전자재료학회 춘계학술대회 135 (2005).

Cited by

  1. Study on Electron Temperature Diagnostic and the ITO Thin Film Characteristics of the Plasma Emission Intensity by the Oxygen Gas Flow vol.49, pp.1, 2016, https://doi.org/10.5695/JKISE.2016.49.1.92