DOI QR코드

DOI QR Code

Nanoscale Pattern Formation of Li2CO3 for Lithium-Ion Battery Anode Material by Pattern Transfer Printing

패턴전사 프린팅을 활용한 리튬이온 배터리 양극 기초소재 Li2CO3의 나노스케일 패턴화 방법

  • Kang, Young Lim (Department of Materials Science and Engineering, Pukyong National University (PKNU)) ;
  • Park, Tae Wan (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology (KICET)) ;
  • Park, Eun-Soo (Eloi Materials Lab (EML) Co. Ltd.) ;
  • Lee, Junghoon (Department of Metallurgical Engineering, Pukyong National University (PKNU)) ;
  • Wang, Jei-Pil (Department of Metallurgical Engineering, Pukyong National University (PKNU)) ;
  • Park, Woon Ik (Department of Materials Science and Engineering, Pukyong National University (PKNU))
  • 강영림 (부경대학교 재료공학과) ;
  • 박태완 (한국세라믹기술원 전자융합소재본부) ;
  • 박은수 ((주)이엠엘) ;
  • 이정훈 (부경대학교 금속공학과) ;
  • 왕제필 (부경대학교 금속공학과) ;
  • 박운익 (부경대학교 재료공학과)
  • Received : 2020.11.09
  • Accepted : 2020.11.24
  • Published : 2020.12.30

Abstract

For the past few decades, as part of efforts to protect the environment where fossil fuels, which have been a key energy resource for mankind, are becoming increasingly depleted and pollution due to industrial development, ecofriendly secondary batteries, hydrogen generating energy devices, energy storage systems, and many other new energy technologies are being developed. Among them, the lithium-ion battery (LIB) is considered to be a next-generation energy device suitable for application as a large-capacity battery and capable of industrial application due to its high energy density and long lifespan. However, considering the growing battery market such as eco-friendly electric vehicles and drones, it is expected that a large amount of battery waste will spill out from some point due to the end of life. In order to prepare for this situation, development of a process for recovering lithium and various valuable metals from waste batteries is required, and at the same time, a plan to recycle them is socially required. In this study, we introduce a nanoscale pattern transfer printing (NTP) process of Li2CO3, a representative anode material for lithium ion batteries, one of the strategic materials for recycling waste batteries. First, Li2CO3 powder was formed by pressing in a vacuum, and a 3-inch sputter target for very pure Li2CO3 thin film deposition was successfully produced through high-temperature sintering. The target was mounted on a sputtering device, and a well-ordered Li2CO3 line pattern with a width of 250 nm was successfully obtained on the Si substrate using the NTP process. In addition, based on the nTP method, the periodic Li2CO3 line patterns were formed on the surfaces of metal, glass, flexible polymer substrates, and even curved goggles. These results are expected to be applied to the thin films of various functional materials used in battery devices in the future, and is also expected to be particularly helpful in improving the performance of lithium-ion battery devices on various substrates.

지난 수십년간 인류에게 핵심적인 에너지 자원이었던 화석연료가 갈수록 고갈되고 있고, 산업발전에 따른 오염이 심해지고 있는 환경을 보호하기 위한 노력의 일환으로, 친환경 이차전지, 수소발생 에너지 장치, 에너지 저장 시스템 등과 관련한 새로운 에너지 기술들이 개발되고 있다. 그 중에서도 리튬이온 배터리 (Lithium ion battery, LIB)는 높은 에너지 밀도와 긴 수명으로 인해, 대용량 배터리로 응용하기에 적합하고 산업적 응용이 가능한 차세대 에너지 장치로 여겨진다. 하지만, 친환경 전기 자동차, 드론 등 증가하는 배터리 시장을 고려할 때, 수명이 다한 이유로 어느 순간부터 많은 양의 배터리 폐기물이 쏟아져 나올 것으로 예상된다. 이를 대비하기 위해, 폐전지에서 리튬 및 각종 유가금속을 회수하는 공정개발이 요구되는 동시에, 이를 재활용할 수 있는 방안이 사회적으로 요구된다. 본 연구에서는, 폐전지의 재활용 전략소재 중 하나인, 리튬이온 배터리의 대표적 양극 소재 Li2CO3의 나노스케일 패턴 제조 방법을 소개하고자 한다. 우선, Li2CO3 분말을 진공 내 가압하여 성형하고, 고온 소결을 통하여 매우 순수한 Li2CO3 박막 증착용 3인치 스퍼터 타겟을 성공적으로 제작하였다. 해당 타겟을 스퍼터 장비에 장착하여, 나노 패턴전사 프린팅 공정을 이용하여 250 nm 선 폭을 갖는, 매우 잘 정렬된 Li2CO3 라인 패턴을 SiO2/Si 기판 위에 성공적으로 형성할 수 있었다. 뿐만 아니라, 패턴전사 프린팅 공정을 기반으로, 금속, 유리, 유연 고분자 기판, 그리고 굴곡진 고글의 표면에까지 Li2CO3 라인 패턴을 성공적으로 형성하였다. 해당 결과물은 향후, 배터리 소자에 사용되는 다양한 기능성 소재의 박막화에 응용될 것으로 기대되고, 특히 다양한 기판 위에서의 리튬이온 배터리 소자의 성능 향상에 도움이 될 것으로 기대된다.

Keywords

References

  1. M. Maleki, G. A. El-Nagar, D. Bernsmeier, J. Schneider, and C. Roth, "Fabrication of an efficient vanadium redox flow battery electrode using a free-standing carbon-loaded electro-spun nanofibrous composite", Sci. Rep., 10(1), 1 (2020). https://doi.org/10.1038/s41598-019-56847-4
  2. G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson, and W. Wilcke, "Lithium-air battery: promise and challenges", J. Phys. Chem., 1(14), 2193 (2010).
  3. Y. Ding, X. Guo, Y. Qian, L. Xue, A. Dolocan, and G. Yu, "Room-Temperature All-Liquid-Metal Batteries Based on Fusible Alloys with Regulated Interfacial Chemistry and Wetting", Adv. Mater., 32(30), 2002577 (2020). https://doi.org/10.1002/adma.202002577
  4. W. Van Schalkwijk and B. Scrosati, "Advances in Lithium-Ion Batteries introduction", pp.1-5 Springer, Boston, MA (2002).
  5. A. Manthiram, "A reflection on lithium-ion battery cathode chemistry", Nat. Commun., 11(1), 1 (2020). https://doi.org/10.1038/s41467-019-13993-7
  6. L. Lu, X. Han, J. Li, J. Hua, and M. Ouyang, "A review on the key issues for lithium-ion battery management in electric vehicles", J. Power Sources, 226(3-4), 272 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.060
  7. S. M. Shin, N. H. Kim, J. S. Sohn, D. H. Yang, and Y. H. Kim, "Development of a metal recovery process from Li-ion battery wastes", Hydrometallurgy, 79, 172 (2005). https://doi.org/10.1016/j.hydromet.2005.06.004
  8. G. Nayaka, J. Manjanna, K. Pai, R. Vadavi, S. Keny, and V. Tripathi, "Recovery of valuable metal ions from the spent lithium-ion battery using aqueous mixture of mild organic acids as alternative to mineral acids", Hydrometallurgy, 151, 73 (2015). https://doi.org/10.1016/j.hydromet.2014.11.006
  9. W. Gao, X. Zhang, X. Zheng, X. Lin, H. Cao, Y. Zhang, and Z. Sun, "Lithium carbonate recovery from cathode scrap of spent lithium-ion battery: a closed-loop process", Environ. Sci. Technol., 51(3), 1662 (2017). https://doi.org/10.1021/acs.est.6b03320
  10. Y. Wang and W. Zhu, "Micro/nano-structured Li4Ti5O12 as high rate anode material for lithium ion batteries", Solid State Ionics, 349, 115297 (2020). https://doi.org/10.1016/j.ssi.2020.115297
  11. P. Kumar, C. L. Berhaut, D. Zapata Dominguez, E. De Vito, S. Tardif, S. Pouget, S. Lyonnard, and P. H. Jouneau, "Nano-Architectured Composite Anode Enabling Long-Term Cycling Stability for High-Capacity Lithium-Ion Batteries", Small, 16(11), 1906812 (2020). https://doi.org/10.1002/smll.201906812
  12. H. J. Kim, M. H. Seo, M. H. Park, and J. P. Cho, "A critical size of silicon nano-anodes for lithium rechargeable batteries", Ange. Chem. Inter. Ed., 49(12), 2146 (2010). https://doi.org/10.1002/anie.200906287
  13. C. He, S. Wu, N. Zhao, C. Shi, E. Liu, and J. Li, "Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material", ACS Nano, 7(5), 4459 (2013). https://doi.org/10.1021/nn401059h
  14. C. De las Casas and W. Li, "A review of application of carbon nanotubes for lithium ion battery anode material", J. Power Sources, 208, 74 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.013
  15. G. H. An and H. J. Ahn, "Electrode Properties of Li-ion Batteries using TiO2-based Composite Nanowires", J. Microelectron. Packag. Soc., 18(3), 19 (2011). https://doi.org/10.6117/kmeps.2011.18.3.019
  16. J. Zhang, K. Xiao, T. Zhang, G. Qian, Y. Wang, and Y. Feng, "Porous nickel-cobalt layered double hydroxide nanoflake array derived from ZIF-L-Co nanoflake array for battery-type electrodes with enhanced energy storage performance", Electrochim. Acta, 226, 113 (2017). https://doi.org/10.1016/j.electacta.2016.12.195
  17. J. Yao, B. Liu, S. Ozden, J. Wu, S. Yang, M.-T. F. Rodrigues, K. Kalaga, P. Dong, P. Xiao, and Y. Zhang, "3D nanostructured molybdenum diselenide/graphene foam as anodes for long-cycle life lithium-ion batteries", Electrochim. Acta., 176, 103 (2015). https://doi.org/10.1016/j.electacta.2015.06.138
  18. J. S. Park, S. S. Hyeon, S. H. Jeong, and H.-J. Kim, "Performance enhancement of Li-ion battery by laser structuring of thick electrode with low porosity", J. Ind. Eng. Chem., 70, 178 (2019). https://doi.org/10.1016/j.jiec.2018.10.012
  19. I. Y. Kang, J. Y. Jang, M.-S. Kim, J.-W. Park, J.-H. Kim, and Y. W. Cho, "Nanostructured silicon/silicide/carbon composite anodes with controllable voids for Li-ion batteries", Mater. Des., 120, 230 (2017). https://doi.org/10.1016/j.matdes.2017.02.018
  20. S. Ouyang, Y. Xie, D. Wang, D. Zhu, X. Xu, T. Tan, J. DeFranco, and H. H. Fong, "Photolithographic patterning of highly conductive PEDOT: PSS and its application in organic light-emitting diodes", J. Polym. Sci. B: Polym. Phys., 52(18), 1221 (2014). https://doi.org/10.1002/polb.23547
  21. M. J. Kim, M. J. Lee, H. G. Min, S. H. Kim, J. H. Yang, H. M. Kweon, W. S. Lee, D. H. Kim, J.-H. Choi, and D. Y. Ryu, "Universal three-dimensional crosslinker for all-photopatterned electronics", Nat. Commun., 11(1), 1 (2020). https://doi.org/10.1038/s41467-019-13993-7
  22. J. A. DeFranco, B. S. Schmidt, M. Lipson, and G. G. Malliaras, "Photolithographic patterning of organic electronic materials", Org. Electron., 7(1), 22 (2006). https://doi.org/10.1016/j.orgel.2005.10.002
  23. W. Li and M. C. Marconi, "Extreme ultraviolet Talbot interference lithography", Opt. Express, 23(20), 25532 (2015). https://doi.org/10.1364/OE.23.025532
  24. S.-K. Kim, "Extreme Ultraviolet Multilayer Defect Compensation in Computational Lithography", J. Nanosci. Nanotechnol., 16(5), 5415 (2016). https://doi.org/10.1166/jnn.2016.12254
  25. W. I. Park, K. H. Kim, H. I. Jang, J. W. Jeong, J. M. Kim, J. S. Choi, J. H. Park, and Y. S. Jung, "Directed Self-Assembly with Sub-100 Degrees Celsius Processing Temperature, Sub-10 Nanometer Resolution, and Sub-1 Minute Assembly Time", Small, 8(24), 3762 (2012). https://doi.org/10.1002/smll.201201407
  26. S.-J. Jeong, J. Y. Kim, B. H. Kim, H.-S. Moon, and S. O. Kim, "Directed self-assembly of block copolymers for next generation nanolithography", Mater. Today., 16(12), 468 (2013). https://doi.org/10.1016/j.mattod.2013.11.002
  27. J. M. Kim, Y. Kim, W. I. Park, Y. H. Hur, J. W. Jeong, D. M. Sim, K. M. Baek, J. H. Lee, M. J. Kim, and Y. S. Jung, "Eliminating the Trade-Off between the Throughput and Pattern Quality of Sub-15 nm Directed Self-Assembly via Warm Solvent Annealing", Adv. Funct. Mater., 25(2), 306 (2015). https://doi.org/10.1002/adfm.201401529
  28. J. W. Jeong, S. R. Yang, Y. H. Hur, S. W. Kim, K. M. Baek, S. M. Yim, H.-I. Jang, J. H. Park, S. Y. Lee, and C.-O. Park, "High-resolution nanotransfer printing applicable to diverse surfaces via interface-targeted adhesion switching", Nat. Commun., 5(1), 1 (2014).
  29. J. W. Jeong, W. I. Park, L. M. Do, J. H. Park, T. H. Kim, G. S. Chae, and Y. S. Jung, "Nanotransfer Printing with sub-10 nm Resolution Realized using Directed Self-Assembly", Adv. Mater., 24(26), 3526 (2012). https://doi.org/10.1002/adma.201200356
  30. T. W. Park, H. Jung, Y. R. Cho, J. W. Lee, and W. I. Park, "Pattern Formation of Highly Ordered Sub-20 nm Pt Cross-Bar on Ni Thin Film", Korean J. Met. Mater., 56(12), 910 (2018). https://doi.org/10.3365/KJMM.2018.56.12.910
  31. T. W. Park, Y. J. Choi, and W. I. Park, "Durability of Nano-/micro- Pt Line Patterns Formed on Flexible Substrate", J. Microelectron. Packag. Soc., 25(3), 49 (2018). https://doi.org/10.6117/KMEPS.2018.25.3.049
  32. T. W. Park, M. H. Byun, H. S. Jung, G. R. Lee, J. H. Park, H.-I. Jang, J. W. Lee, S. H. Kwon, S. B. Hong, J.-H. Lee, Y. S. Jung, K. H. Kim, and W. I. Park, "Thermally assisted nanotransfer printing with sub-20-nm resolution and 8-inch wafer scalability", Sci. Adv., 6(31), eabb6462 (2020). https://doi.org/10.1126/sciadv.abb6462