• Title/Summary/Keyword: VLSI 어레이

Search Result 51, Processing Time 0.024 seconds

반도체, 맞춤시대 본격돌입 - 회로설계과정에 고객참여를 유도

  • 한국발명진흥회
    • 발명특허
    • /
    • v.10 no.5 s.111
    • /
    • pp.71-71
    • /
    • 1985
  • 반도체, 컴퓨터, 통신기기 분야에서 최첨단 기술제품의 생산 공급을 통해 그동안 국내 전자산업을 선도해 온 금성반도체(대표 : 구자두)는, 지난해 6월 세계 3번째로 반주문형 초대규모 집적회로(VLSI)인 CMOS게이트 어레이를 개발하여 미국 엘에스아이 로직(LISLOGIC)사와 1억 5천만불의 수출계약을 체결함으로써 국내 최초로 주문형 반도체의 수출시대를 연데이어, 4월 10일 여의도 중심부 신한 빌딩 4층에 100여평 규모의 게이트 어레이 디자인 센터를 개관하여 특수한 반도체를 주문하는 고객이 동 제품의 회로 설계과정에 직접참여할 수 있도록 함으로써 수주활동을 본격화 하는 일대 전기를 마련하였다.

  • PDF

Efficient Architecture of an n-bit Radix-4 Modular Multiplier in Systolic Array Structure (시스톨릭 어레이 구조를 갖는 효율적인 n-비트 Radix-4 모듈러 곱셈기 구조)

  • Park, Tae-geun;Cho, Kwang-won
    • The KIPS Transactions:PartA
    • /
    • v.10A no.4
    • /
    • pp.279-284
    • /
    • 2003
  • In this paper, we propose an efficient architecture for radix-4 modular multiplication in systolic array structure based on the Montgomery's algorithm. We propose a radix-4 modular multiplication algorithm to reduce the number of iterations, so that it takes (3/2)n+2 clock cycles to complete an n-bit modular multiplication. Since we can interleave two consecutive modular multiplications for 100% hardware utilization and can start the next multiplication at the earliest possible moment, it takes about only n/2 clock cycles to complete one modular multiplication in the average. The proposed architecture is quite regular and scalable due to the systolic array structure so that it fits in a VLSI implementation. Compared to conventional approaches, the proposed architecture shows shorter period to complete a modular multiplication while requiring relatively less hardware resources.

A VLSI array implementation of vector-radix 2-D fast DCT (Vector-radix 2차원 고속 DCT의 VLSI 어레이 구현)

  • 강용섬;전흥우;신경욱
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.1
    • /
    • pp.234-243
    • /
    • 1995
  • An arry circuit is designed for parallel computation of vector-radix 2-D discrete cosine transform (VR-FCT) which is a fast algorithm of DCT. By using a 2-D array of processing elements (PEs), the butterfly structure of the VR-FCT can be efficiently implemented with high condurrency and local communication geometry. The proposed implementation features architectural medularity, regularity and locality, so that it is very suitable for VLSI realization. Also, no transposition memory is required. The array core for (8$\times$8) 2-D DCT, which is designed usign ISRC 1.5.mu.m N-Well CMOS technology, consists of 64 PEs arranged in (8$\times$8) 2-D array and contains about 98,000 transistors on an area of 138mm$^{2}$. From simulation results, it is estimated that (8$\times$8) 2-D DCT can be computed in about 0.88 .mu.sec at 50 MHz clock frequency, resulting in the throughput rate of about 72${\times}10^[6}$ pixels per second.

  • PDF

VLSI Implementation of Low-Power Motion Estimation Using Reduced Memory Accesses and Computations (메모리 호출과 연산횟수 감소기법을 이용한 저전력 움직임추정 VLSI 구현)

  • Moon, Ji-Kyung;Kim, Nam-Sub;Kim, Jin-Sang;Cho, Won-Kyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5A
    • /
    • pp.503-509
    • /
    • 2007
  • Low-power motion estimation is required for video coding in portable information devices. In this paper, we propose a low-power motion estimation algorithm and 1-D systolic may VLSI architecture using full search block matching algorithm (FSBMA). Main power dissipation sources of FSBMA are complex computations and frequent memory accesses for data in the search area. In the proposed algorithm, memory accesses and computations are reduced by using 1D PE (processing array) array architecture performing motion estimation of two neighboring blocks in parallel and by skipping unnecessary computations during motion estimation. The VLSI implementation results of the algorithm show that the proposed VLSI architecture can save 9.3% power dissipation and can operate two times faster than an existing low-power motion estimator.

Systolic arry archtecture for full-search mothion estimation (완전탐색에 의한 움직임 추정기 시스토릭 어레이 구조)

  • 백종섭;남승현;이문기
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.12
    • /
    • pp.27-34
    • /
    • 1994
  • Block matching motion estimation is the most widely used method for motion compensated coding of image sequences. Based on a two dimensional systolic array, VLSI architecture and implementation of the full search block matching algorithm are described in this paper. The proposed architecture improves conventional array architecture by designing efficient processing elements that can control the data prodeuced by efficient search window division method. The advantages are that 1) it allows serial input to reduce pin counts for efficient composition of local memories but performs parallel processing. 2) It is flexible and can adjust to dimensional changes of search windows with simple control logic. 3) It has no idel time during the operation. 4) It can operate in real/time for low and main level in MPEG-2 standard. 5) It has modular and regular structure and thus is sutiable for VLSI implementation.

  • PDF

Design of Systolic Multipliers in GF(2$^{m}$ ) Using an Irreducible All One Polynomial (기약 All One Polynomial을 이용한 유한체 GF(2$^{m}$ )상의 시스톨릭 곱셈기 설계)

  • Gwon, Sun Hak;Kim, Chang Hun;Hong, Chun Pyo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8C
    • /
    • pp.1047-1054
    • /
    • 2004
  • In this paper, we present two systolic arrays for computing multiplications in CF(2$\^$m/) generated by an irreducible all one polynomial (AOP). The proposed two systolic mays have parallel-in parallel-out structure. The first systolic multiplier has area complexity of O(㎡) and time complexity of O(1). In other words, the multiplier consists of m(m+1)/2 identical cells and produces multiplication results at a rate of one every 1 clock cycle, after an initial delay of m/2+1 cycles. Compared with the previously proposed related multiplier using AOP, our design has 12 percent reduced hardware complexity and 50 percent reduced computation delay time. The other systolic multiplier, designed for cryptographic applications, has area complexity of O(m) and time complexity of O(m), i.e., it is composed of m+1 identical cells and produces multiplication results at a rate of one every m/2+1 clock cycles. Compared with other linear systolic multipliers, we find that our design has at least 43 percent reduced hardware complexity, 83 percent reduced computation delay time, and has twice higher throughput rate Furthermore, since the proposed two architectures have a high regularity and modularity, they are well suited to VLSI implementations. Therefore, when the proposed architectures are used for GF(2$\^$m/) applications, one can achieve maximum throughput performance with least hardware requirements.

A New Systolic Array for LSD-first Multiplication in $CF(2^m)$ ($CF(2^m)$상의 LSD 우선 곱셈을 위한 새로운 시스톨릭 어레이)

  • Kim, Chang-Hoon;Nam, In-Gil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4C
    • /
    • pp.342-349
    • /
    • 2008
  • This paper presents a new digit-serial systolic multiplier over $CF(2^m)$ for cryptographic applications. When input data come in continuously, the proposed array produces multiplication results at a rate of one every ${\lceil}m/D{\rceil}$ clock cycles, where D is the selected digit size. Since the inner structure of the proposed array is tree-type, critical path increases logarithmically proportional to D. Therefore, the computation delay of the proposed architecture is significantly less than previously proposed digit-serial systolic multipliers whose critical path increases proportional to D. Furthermore, since the new architecture has the features of regularity, modularity, and unidirectional data flow, it is well suited to VLSI implementations.

VLSI Design for Motion Estimation Based on Bit-plane Matching (비트 플레인 정합에 의한 움직임 추정기의 VLSI 설계)

  • Go, Yeong-Gi;O, Hyeong-Cheol;Go, Seong-Je
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.5
    • /
    • pp.509-517
    • /
    • 2001
  • Full-search algorithm requires large amount of computation which causes time delay or very complex hardware architecture for real time implementation. In this paper, we propose a fast motion estimator based on bit-plane matching, which reduce the computational complexity and the hardware cost. In the proposed motion estimator, the conventional motion estimation algorithms are applied to the binary images directly extracted from the video sequence. Furthermore, in the proposed VLSI motion estimator, we employ a Pair of processing cores that calculate the motion vector continuously By controlling the data flow in a systolic fashion using the internal shift registers in the processing cores, we avoid using SRAM (local memory) so that we remove the time overhead for accessing the local memory and adopt lower-cost fabrication technology. We modeled and tested the proposed motion estimator in VHDL, and then synthesized the whole system which has been integrated in a 0.6-$\mu$m triple-metal CMOS chip of size 8.15 X 10.84$\textrm{mm}^2$.

  • PDF

Design and Analysis of a 2-digit-serial systolic multiplier for GF($2^m$) (GF($2^m$)상에서 2-디지트 시리얼 시스톨릭 곱셈기 설계 및 분석)

  • 김기원;이건직;유기영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10a
    • /
    • pp.605-607
    • /
    • 2000
  • 본 논문에서는 유한 필드 GF(2m)상에서 모듈러 곱셈 A(x)B(x) mod p(x)를 수행하는 2-디지트 시리얼 (2-digit-serial) 시스톨릭 어레이 구조인 곱셈기를 제안하였다. LSB-first 곱셈 알고리즘을 분석한 후 2-디지트 시리얼 형태의 자료의존 그래프(data dependency graph, 이하 DG)를 생성하여 시스톨릭 어레이를 설계하였다. 제안한 구조는 정규적이고 서로 반대 방향으로 진행하는 에지들이 없다. 그래서 VLSI 구현에 적합하다. 제안한 2-디지트 시리얼 곱셈기는 비트-패러럴(bit-parallel) 곱셈기 보다는 적은 하드웨어를 사용하며 비트-시리얼(bit-serial) 곱셈기 보다는 빠르다. 본 논문에서 제안한 2-디지트 시리얼 시스톨릭 곱셈기는 기존의 같은 종류의 곱셈기 보다 처리기의 최대 지연 시간이 적다. 그러므로 전체 시스톨릭 곱셈기의 처리시간을 향상시킬 수 있다.

  • PDF

Design of the Fixed Size Systolic Array for the Back-propagation ANN (역전파 ANN을 위한 고정 크기 시스톨릭 어레이 설계)

  • 김지연;장명숙;박기현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10a
    • /
    • pp.691-693
    • /
    • 1998
  • A parallel processing systolic array reduces execution time of the Back-propagation ANN. But, systolic array must be designed whenever the number of neurons in the ANN differ. To use the systolic array which is aready designed ad a fixed size VLSI chip, partition of the problem size systolic array must be performed. This paper presents a design method of the fixed size systolic array for the Back-propagation algorthm using LSGP and LPGS partion method

  • PDF