• Title/Summary/Keyword: Urban Excavation

Search Result 287, Processing Time 0.023 seconds

A Study on the Characteristics of Blasting Vibration and Breaker Vibration by Rock Excavation (암반굴착에 따른 발파진동과 브레이커진동의 특성에 관한 연구)

  • Lim, Han-Uk;Park, Hyeon-Seong
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.107-117
    • /
    • 2002
  • The blast works for open cuts and underground constructions near urban areas have recently increased complaint of ground vibration, air blast and fly rock. In order to reduce these problems, it is necessary to develop more cautious blasting, or non-blast excavation methods by mechanical power. For these breaker workings instead of blast are sometimes adopted. To compare the characteristics of blast vibration with breaker vibration, the level, range of frequency and spectrum amplifications of each vibration were studied.

  • PDF

Control of Blast Vibration, Air Blast, and Fly Rock in Rock Excavation (암반굴착에 의한 발파진동, 소음 및 비석의 조절)

  • Ryu, Chang-Ha
    • Tunnel and Underground Space
    • /
    • v.2 no.1
    • /
    • pp.102-115
    • /
    • 1992
  • Blasting operations associated with rock excavation work may have an environmental impact in nearby structures or human beings. With the increase of construction work in urban areas, vibration problems and complaints have also increased. In order to determine the optimum design parameters for safe blast, it is essential to understand blast mechanism, design variables involved in blast-induced damage, and their effects on the blasting results. This paper deals with the characteristics of ground vibrations, air blast and fly rock caused by blast, including the general method of establishing the vibration predictors, and damage criteria suggested by various investigators. The results of field measurements from open pit mine and tunnel construction work are discussed. Basic concepts of how to design blast parameters to control the generation of ground vibrations, air blast and fly rock are presented.

  • PDF

Deformation Behavior and Reinforcement Design of a Tunnel Excavated in Weak Rock by the NATM (연약암반에 굴착되는 NATM 터널의 변형거동과 보강설계)

  • 서영호;이정인
    • Tunnel and Underground Space
    • /
    • v.3 no.2
    • /
    • pp.132-141
    • /
    • 1993
  • Laboratory and field tests were performed to find out the effectiveness of ground improvement by grouting for an urban subway tunnel that was excavated in weak rock by the NATM. Field measurements were carried out to monitor the behavior of rock mass around the tunnel and to ensure the validity of the current design of the distance form the measuring points to the tunnel face. The final converged displacement and the peroid were predicted using the gamma function. It was found that the ground improvement in terms of reduced permeability and increased stength in the self-supportability of the excavation face enabled the NATM applied in poor gorund. As the result of applying the gamma function to the predicting of displacement, the final displacement including the preceding one and the converged period could be approximately predicted at the early excavation stage.

  • PDF

Application for Self-Supported Retaining Wall Using Deep Cement Mixing (DCM(심층혼합처리공법)에 의한 자립식 흙막이 적용사례)

  • Jeong, Gyeong-Hwan;Kim, Yong-Wan;Shin, Min-Sik;Han, Kyoung-Tae;Kim, Tae-Hyo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.257-267
    • /
    • 2006
  • The earth retaining wall systems for excavation works in a populated urban area or a poor soil deposit can be limited due to various restriction. Thus there are various methods to be applied for them such as the soldier pile method, the diaphragm wall with counterfort and so on. In this study, the self-supported earth retaining wall using the DCM(Deep Cement Mixing) method, including its merits, demerits and some important characteristics occured in the design and the construction stage, was introduced. It might be reference for the other design and construction procedures using the DCM method.

  • PDF

Model Test for the Damage Assessment of Adjacent Frame Structures in Urban Excavation (지반 굴착에 따른 인접 프레임구조물의 손상평가에 관한 모형실험 연구)

  • Kim, Seong-Cheol;Hwang, Eui-Seok;Kim, Zu-Cheol;Kim, Hak-Moon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1490-1495
    • /
    • 2005
  • In this study, Model test of concrete frame structures with various shapes and locations are carried out by means of applying Peck's(1969) settlement method. The results of the model test indicated that important correlations existed between the behavior of frame structure and ground movement. Also, the damage level of frame structure closely influenced by the phase of excavation. Therefore, prediction of damage level at early phase of construction should be very precise. The damage level graph by Cording et al.(2001), the angular distortion provided gradually more serious damage to frame structures for the all cases. But the damage level graph by Burland(1997), was difficult to confirm because of very small amount of deflection ratio.

  • PDF

Case Study of Braced Wall System with High-strength Steel Pipe Strut (고강도 강관파이프 스트러트 흙막이공법 사례연구)

  • Shin, Jae-Min;Park, Hyun-Young;Joo, Jin-Kyu;Shin, Yoonseok;Kim, Gwang-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.19-20
    • /
    • 2012
  • According to develop urban area, the depth and floor area of basement tend to become deeper and larger. Excavation work for basement floor work is very important because its cost take 20% of total construction cost. Therefore, many studies of developing retaining wall system have performed for feasibility and safety in deep excavation work. In this study, new supporting system used high-strength pipe for retaining wall is introduced to reduce the construction cost and improve the safety and constructability by analyzing case study.

  • PDF

A case study on the excavation work using the reinforced ground anchor with geosynthetics in urban area (토목섬유로 보강한 지반앵커를 사용한 도심지 굴착시공사례)

  • Lim, Kang-Ho;Oh, Jung-Hwan;Kim, Tae-Seob;Choi, Sung-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.902-911
    • /
    • 2009
  • There appeared many difficulties due to various construction factors during the recent construction adjacent to the housing for the aging. In particular, the study is going to summarize and overview the selection procedure and construction details of the excavation engineering of this site, which could ensure workability and economic efficiency through the construction of a shorter anchor than the length of the existing anchor with a minimal marginal space without invading the nearby private land.

  • PDF

Evaluation of urban regeneration projects in accordance with the type of declining area - Focusing on the declining area in Daejeon - (쇠퇴지역의 유형에 따른 도시재생사업의 평가 - 대전광역시 쇠퇴지역을 중심으로 -)

  • Park, So-Yeon;Oh, Deog-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4984-4991
    • /
    • 2015
  • This study derives the city's declining area by the type, and evaluates urban regeneration projects to sustainable urban regeneration planning factors. And assess whether urban regeneration projects are suitable for declining aspect of area. Application of sustainable urban regeneration plan factors of 19 declining areas is found to be less than 'normal'. This showed that urban regeneration projects not being actively enforced. All areas except hoedeokdong have been estimated that urban regeneration projects did not enforce the corresponding type on the decline, it still showed that concentrated on the physical regeneration projects. Excavation of social, economic regeneration projects that can respond to the type of decline and integrated, ongoing urban regeneration efforts are needed.

The Deformation Behavior of Anchored Retention Walls in Cut Slope (절개사면에 설치된 앵커지지 흙막이벽의 변형거동)

  • Song Young-Suk;Lee Jae-Ho;Kim Tae-Hyung
    • The Journal of Engineering Geology
    • /
    • v.15 no.2 s.42
    • /
    • pp.155-168
    • /
    • 2005
  • The behavior of earth retention wall installed in a cut slope is different from the behavior of retention wall applied in an urban excavation. In order to establish the design method of anchored retention wall in the cut slope, the behavior of anchored retention wall needs to be investigated and checked in detail. In this study, the behavior of anchored retention wall was investigated by the instrumentation installed in the cut slope, where was stabilized by a row of piles in an apartment construction site. The horizontal displacement of anchored retention wall was larger than the displacement of slope soil behind the wall at the early stage of excavation. As the excavation depth became deeper, the horizontal displacement of slope soil was larger than the displacement of anchored retention wall. It means that the horizontal displacement of anchored retention wall due to excavation is restrained by soldier pile stiffness and jacking force of anchor at the early stage of excavation. lacking force of anchor was mainly influenced on the horizontal displacement of anchored retention wall. The displacements of anchored retention wall and slope soil were affected mainly by rainfall infiltrated from the ground surface. Meanwhile, the horizontal displacement of anchored retention wall with a sloped backside was about $2\~6$ times larger than the displacement of anchored retention wall with a horizontal backside of excavation.

Assessment of Applicability of Pretentioned Soil-Nail Systems with in-situ monitoring (현장 계측을 통한 프리텐션 쏘일네일링 시스템의 적용성 평가)

  • Lee, Hyuk-Jin;Ahn, Kwang-Kuk;Kim, Hong-Taek;Bang, Yoon-Kyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.320-329
    • /
    • 2005
  • The use of diverse methods for the retaining system has been continuously increased in order to maintain the stability during excavation. However, ground anchor system occasionally may have the restriction in urban excavation sites nearby the existing structures because of space limitation. In this case, soil nailing system with relatively short length of nails could be efficiently useful as an alternative method. The general soil nailing support system, however, may result in excessive deformations particularly in excavating the zone of weak soils or nearby the existing structures. Therefore, applying the pretension force to the soil nails then could play important roles to reduce deformations mainly in an upper part of the nailed-soil excavation system as well as to improve the local slope stability. In this study, a newly modified soil nailing technology named as the PSN(Pretention Soil Nailing) is developed to reduce both facing displacements and ground surface settlements during top-down excavation process as well as to increase the global slope stability. Up to now, the PSN system has been investigated mainly focusing on an establishment of the design procedure. In the present study, the field tests including pull-out tests were fulfilled to investigate the behavior of characteristics for PSN system. All results of tests were also analyzed to provide a fundamental and efficient design.

  • PDF