• Title/Summary/Keyword: Unstructured finite volume method

Search Result 129, Processing Time 0.026 seconds

A STUDY ON AN INTERFACE CAPTURING METHOD APPLICABLE TO UNSTRUCTURED MESHES FOR THE ANALYSIS OF FREE SURFACE FLOW (자유표면유동 해석을 위한 비정렬격자계에 적합한 경계면포착법 연구)

  • Myong, H.K.;Kim, J.E.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.14-19
    • /
    • 2006
  • A conservative finite-volume method for computing 3-D flow with an unstructured cell-centered method has been extended to free surface flows or two-fluid systems with topologically complex interfaces. It is accomplished by implementing the high resolution method(CICSAM) by Ubbink(1997) for the accurate capturing of fluid interfaces on unstructured meshes, which is based on the finite-volume technique and is fully conservative. The calculated results with the present method are compared to show the ease and accuracy with available numerical and experimental results reported in the literature.

NUMERICAL BEHAVIOR OF VERTEX-CENTERED AND CELL-CENTERED FINITE-VOLUME METHODS ON UNSTRUCTURED MESHES (비정렬 격자계에서 격자점 중심과 격자 중심 유한체적법의 수치적인 거동에 관한 비교 연구)

  • Kim, J.S.;Lee, H.D.;Kwon, O.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.57-60
    • /
    • 2006
  • This paper presents an assessment of vertex-centered and cell-centered finite-volume methods on unstructured meshes. The results indicate that the vertex-centered method is more reliable than the cell-centered method.

  • PDF

AN UNSTRUCTURED MESH FINITE VOLUME METHOD FOR MODELLING SALTWATER INTRUSION INTO COASTAL AQUIFERS

  • Liu, F.;Turner, I.;Anh, V.
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.2
    • /
    • pp.561-577
    • /
    • 2002
  • In this paper, a two-dimensional finite volume unstructured mesh method (FVUM) based on a triangular background interpolation mesh is developed for analysing the evolution of the saltwater intrusion into single and multiple coastal aquifer systems. The model formulation consists of a ground-water flow equation and a salt transport equation. These coupled and non-linear partial differential equations are transformed by FVUM into a system of differential/algebraic equations, which is solved using backward differentiation formulas of order one through five. Simulation results are compared with previously published solutions where good agreement is observed.

A THREE-DIMENSIONAL UNSTRUCTURED FINITE VOLUME METHOD FOR ANALYSIS OF DROPLET IMPINGEMENT IN ICING (비정렬 격자 기반의 결빙 액적 해석을 위한 유한체적 기법)

  • Jung, K.Y.;Jung, S.K.;Myong, R.S.
    • Journal of computational fluids engineering
    • /
    • v.18 no.2
    • /
    • pp.41-48
    • /
    • 2013
  • Ice accretion on the solid surface is an importance factor in assessing the performance of aircraft and wind turbine blade. Changes in the external shape due to ice accretion can greatly deteriorate the aerodynamic performance. In this study, a three-dimensional upwind-type second-order positivity-preserving finite volume CFD scheme based on the unstructured mesh topology is developed to simulate two-phase flow in atmospheric icing condition. The code is then validated by comparing with NASA IRT experimental data on the sphere. The present results of the collection efficiency are found to be in close agreement with experimental data and show improvement near the stagnation region.

Development of 3-D Flow Analysis Code Using Unstructured Grid System (II) - Code's Performance Evaluation - (비정렬격자계를 사용하는 3차원 유동해석코드 개발 (II) - 코드성능평가 -)

  • Kim, Jong-Tae;Kim, Jong-Eun;Myong, Hyon-Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.9 s.240
    • /
    • pp.1057-1064
    • /
    • 2005
  • A conservative finite-volume numerical method using unstructured meshes, which is developed by the authors, is evaluated for its application to several 2-D benchmark problems using a variety of quadrilateral, triangular and hybrid meshes. The present pressure-based numerical method for unstructured mesh clearly demonstrates the same accuracy and robustness as that fur typical structured mesh.

MOMENT-OF-FLUID METHOD FOR FREE SURFACE FLOW SIMULATION USING UNSTRUCTURED MESHES (비정렬 격자상에서 Moment-of-Fluid 방법을 이용한 자유표면유동계산)

  • Ahn, H.T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.65-67
    • /
    • 2011
  • The moment-of-fluid (MOF) method is a new volume-tracking method that accurately treats evolving material interfaces. The MOF method uses moment data, namely the material volume fraction, as well as the centroid, for a more accurate representation of the material configuration, interfaces and concomitant volume advection. In this paper, unstructured mesh extension of the MOF method is to be presented. The MOF method is coupled with a stabilized finite element incompressible Navier-Stokes solver for two materials. The effectiveness of the MOF method is demonstrated with a free-surface dam-break problem.

  • PDF

Unstructured Finite-Volume Analysis of Vaporization Characteristics of Fuel Droplets in Laminar Flow Field (비정렬 유한체적법을 이용한 유동장 내의 연료액적 증발 특성 해석)

  • Kim, T.J.;Kim, Y.M.;Sohn, J.L.
    • Journal of ILASS-Korea
    • /
    • v.5 no.1
    • /
    • pp.13-22
    • /
    • 2000
  • The present study has numerically analyzed the vaporization characteristics of fuel droplets in the high temperature convective flow field. The axisymmetric governing equations for mass, momentum, energy, and species are solved by an iterative and implicite unstructured finite-volume method. The moving boundary due to vaporization is handled by the deformable unstructured grid technique. The pressure-velocity coupling in the density-variable flows is treated by the SIMPLEC algorithm. In terms of the matrix solver, Bi-CGSTAB is employed for the numerically efficient and stable convergence. The n-decane is used as a liquid fuel and the initial droplet temperature is 300K. Computations are performed for the nonevaporating and evaporating droplets with the relative interphase velocity(25m/s). The unsteady vaporization process has been simulated up to the nondimensional time, 25. Numerical results indicate that the mathematical model developed in this study succesfully simulates the main features of the droplet vaporization process in the convective environment.

  • PDF

EVALUATION OF NUMERICAL APPROXIMATIONS OF CONVECTION FLUX IN UNSTRUCTURED CELL-CENTERED METHOD (비정렬 셀 중심 방법에서 대류플럭스의 수치근사벙법 평가)

  • Myong H.K.
    • Journal of computational fluids engineering
    • /
    • v.11 no.1 s.32
    • /
    • pp.36-42
    • /
    • 2006
  • The existing numerical approximations of convection flux, especially the spatial higher-order difference schemes, in unstructured cell-centered finite volume methods are examined in detail with each other and evaluated with respect to the accuracy through their application to a 2-D benchmark problem. Six higher-order schemes are examined, which include two second-order upwind schemes, two central difference schemes and two hybrid schemes. It is found that the 2nd-order upwind scheme by Mathur and Murthy(1997) and the central difference scheme by Demirdzic and Muzaferija(1995) have more accurate prediction performance than the other higher-order schemes used in unstructured cell-centered finite volume methods.

Finite volume method for incompressible flows with unstructured triangular grids (비정렬 삼각격자 유한체적법에 의한 비압축성유동 해석)

  • ;;Kim, Jong-Tae;Maeng, Joo-Sung
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.11
    • /
    • pp.3031-3040
    • /
    • 1995
  • Two-dimensional incompressible Navier-Stokes equations have been solved by the node-centered finite volume method with the unstructured triangular meshes. The pressure-velocity coupling is handled by the artificial compressibility algorithm due to its computational efficiency associated with the hyperbolic nature of the resulting equations. The convective fluxes are obtained by the Roe's flux difference splitting scheme using edge-based connectivities and higher-order differences are achieved by a reconstruction procedure. The time integration is based on an explicit four-stage Runge-Kutta scheme. Numerical procedures with local time stepping and implicit residual smoothing have been implemented to accelerate the convergence for the steady-state solutions. Comparisons with experimental data and other numerical results have proven accuracy and efficiency of the present unstructured approach.

Two-Dimensional Finite-Volume Unsteady-Flow Model for Shocks (충격파 모의를 위한 이차원 유한체적 비정상 흐름 모형)

  • Lee, Gil-Seong;Lee, Seong-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.3
    • /
    • pp.279-290
    • /
    • 1998
  • The height and speed of the shock wave are critical data in flood-control operations or in the design of channel walls and bridges along rivers with high flow velocities. Therefore, a numerical model is needed for simulating flow discontinuity over a wide range of conditions. In this study, a governing equation. As a Riemann solver Roe(1981)'s one is used. The model employs the modified MUSCL for handling the unstructured grids in this research. this model that adopts the explicit tradditional twl dimmensional dam break problems, two hydraulic dam break model is simulations, and a steady state simulation in a curved channel. Conclusions of this research are as follows : 1) the finite volume method can be combined with the Godonov-type method that is useful for modeling shocks. Hence, the finite volume method is suitable for modeling shocks. 2) The finite volume model combined with the modified MUSCL is successful in modeling shock. Therefore, modified MUSCL is proved to be valid.

  • PDF