• Title/Summary/Keyword: Underactuated Systems

Search Result 33, Processing Time 0.029 seconds

Dynamics and GA-Based Stable Control for a Class of Underactuated Mechanical Systems

  • Liu, Diantong;Guo, Weiping;Yi, Jianqiang
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.35-43
    • /
    • 2008
  • The control of underactuated mechanical system is very complex for the loss of its control inputs. The model of underactuated mechanical systems in a potential field is built with Lagrangian method and its structural properties are analyzed in detail. A genetic algorithm (GA)based stable control approach is proposed for the class of under actuated mechanical systems. The Lyapunov stability theory and system properties are utilized to guarantee the system stability to its equilibrium. The real-valued GA is used to adjust the controller parameters to improve the system performance. This approach is applied to the underactuated double-pendulum-type overhead crane and the simulation results illustrate the complex system dynamics and the validity of the proposed control algorithm.

Vibrational control of an underactuated mechanical system (작동기가 불충분한 매니퓰레이터의 진동적 제어)

  • Lee, Kang-Ryeol;Hong, Keum-Shik;Lee, Kyo-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.151-154
    • /
    • 1997
  • An open loop vibrational control of underactuated mechanical systems with amplitude and frequency modulations is investigated. The underactuated systems considered in the paper are assumed to have free joints with no brake. The active joints are positioned first by a linearizing control, and then periodic oscillatory inputs are applied to them to move the remaining free joints to their desired states. A systematic way of obtaining averaged systems for the underactuated systems with oscillatory vibrations is developed. A complete solution to the open loop control strategy in terms of determining amplitudes and frequencies for general system is still under investigation. However, a specific control design for 2R manipulator which is obtained the averaging system is demonstrated.

  • PDF

Vibrational Control of an Underactuated Mechanical System : Control Design Using the Averaging Method (불충분한 작동기를 가진 기계시스템의 진동적제어: 평균화기법을 통한 제어 설계)

  • 이강렬;홍금식;이교일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.534-537
    • /
    • 1995
  • An open loop vibrational control of underactuated mechanical system with amplitude and frequency modulations is investigated. The underactuated systems sonsidered in the paper are assumed to have free joints with no brake. The active joints are positioned first by a linearizing control, and then periodic oscillatory input are applied to them to move the remaining free joints to their desired states. A systematic way of obtaining averaged systems for the underactuated systems with oscillatory vibration is developed. A complete solution to the open loop control strateegy in terms of determining amplitudes and frequencies for general system is still under investigation. However, a specific control design for 2R manipulator which is obtained through the averaged system is demonstrated.

  • PDF

Vibrational Control of an Underactuated Mechanical System: Control Design through Averaging Analysis (비구동관절을 가진 기계시스템의 가진제어: 평균화해석을 통한 제어기의 설계)

  • Hong, Keum-Shik;Yang, Kyung-Jinn
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.4
    • /
    • pp.385-393
    • /
    • 1999
  • An open loop vibrational control for an underactuated mechanical system with amplitude and frequently modulation is investigated. Since there is no direct external input to an unactuated joint, the dynamic coupling between the actuated and unactuated joints is utilized for controlling the unactuated joint. Feedback linearization has been performed to incorporate fully the known nonlinearities of the underactuated system considered. The actuated joints are firstly positioned to their desired locations, and the periodic oscillatory inputs are applied to the actuated joints to move the remaining unactuated joints to their target positions. The amplitudes and frequencies of the vibrations introduced are determined through averaging analysis. A systematic way of obtaining an averaged system for the underactuated system via a coordinate transformation is developed. A control design example of 2R planer manipulator with a free joint with no brake is provided.

  • PDF

Nonlinear control of underactuated mechanical systems via feedback linearization and energy based Lyapunov function

  • Hong, Keum-Shik;Sohn, Sung-Chul;Yang, Kyung-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.77-80
    • /
    • 1996
  • In this paper a nonlinear control strategy via feedback linearization and energy based Lyapunov function for underactuated mechanical systems is investigated. Underactuated mechanical system is a system of which the number of actuators is less than the number of degrees of freedom. Developed algorithm is applied to a crane system of grab operation. Positioning of the trolley as well as swing-up of the pendulum to the up-right position including maintaining the sway angle at some desired degree are demonstrated. Simulations are provided.

  • PDF

Formation Control for Underactuated Autonomous Underwater Vehicles Using the Approach Angle

  • Kim, Kyoung Joo;Park, Jin Bae;Choi, Yoon Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.154-163
    • /
    • 2013
  • In this paper, we propose a formation control algorithm for underactuated autonomous underwater vehicles (AUVs) with parametric uncertainties using the approach angle. The approach angle is used to solve the underactuated problem for AUVs, and the leader-follower strategy is used for the formation control. The proposed controller considers the nonzero off-diagonal terms of the mass matrix of the AUV model and the associated parametric uncertainties. Using the state transformation, the mass matrix, which has nonzero off-diagonal terms, is transformed into a diagonal matrix to simplify designing the control. To deal with the parametric uncertainties of the AUV model, a self-recurrent wavelet neural network is used. The proposed formation controller is designed based on the dynamic surface control technique. Some simulation results are presented to demonstrate the performance of the proposed control method.

Design of Integral Sliding Mode Control for Underactuated Mechanical Systems (부족구동 기계시스템을 위한 적분 슬라이딩 모드 제어기 설계)

  • Yoo, Dong Sang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.3
    • /
    • pp.208-213
    • /
    • 2013
  • The problem of finding control laws for underactuated systems has attracted growing attention since these systems are characterized by the fact that they have fewer actuators than the degrees of freedom to be controlled. A sliding mode control based on the theory of variable structure systems is a robust methodology to control nonlinear systems. In this paper, a sliding mode control with integral sliding function is proposed and asymptotical stability is proved in the Lyapunov's sense for underactuated systems. In order to verify the effectiveness of the proposed control, computer simulations for an acrobot, which is a representative underactuated system, are performed. Using Mathworks' Simulink/Simscape, the acrobot dynamics is implemented and the proposed control is composed. Simulations demonstrate the effectiveness and usefulness of the proposed control.

Formation Control of a Group of Underactuated Autonomous Underwater Vehicles (작동기수가 부족한 자율무인잠수정 그룹의 편대제어기법)

  • Li, Ji-Hong;Jun, Bong-Huan;Lee, Pan-Mook;Lim, Yong-Kon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1197-1204
    • /
    • 2008
  • This paper presents an asymptotic formation control scheme for a group of underactuated autonomous underwater vehicles (AUVs) where only three control inputs - surge force, yaw moment and pitch moment are available for each vehicle's six degree of freedom (DOF) underwater motion. Usually, the dynamics agents applied in most of the formation algorithms presented so far have been modeled as particle systems, which is a simple double-integrator system. Therefore, these algorithms cannot be directly applicable to the practical systems, especially to the underwater vehicles whose dynamics are highly nonlinear. Moreover, the vehicles considered in this paper are underactuated. The formation control is derived using general potential function method, and the corresponding potential function consists of two parts: interactions between vehicles and virtual-leader following. Proposed formation scheme guarantees asymptotic local stability of closed-loop system. Numerical simulations are carried out to illustrate the effectiveness of proposed formation scheme.

Switching rules based on fuzzy energy regions for a switching control of underactuated robot systems

  • Ichida, Keisuke;Izumi, Kiyotaka;Watanabe, Keigo;Uchida, Nobuhiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1949-1954
    • /
    • 2005
  • One of control methods for underactuated manipulators is known as a switching control which selects a partially-stable controller using a prespecified switching rule. A switching computed torque control with a fuzzy energy region method was proposed. In this approach, some partly stable controllers are designed by the computed torque method, and a switching rule is based on fuzzy energy regions. Design parameters related to boundary curves of fuzzy energy regions are optimized offline by a genetic algorithm (GA). In this paper, we discuss on parameters obtained by GA. The effectiveness of the switching fuzzy energy method is demonstrated with some simulations.

  • PDF

Obstacle Avoidance of Three-DOE Underactuated Manipulator by Using Switching Computed Torque Method

  • Udawatta, Lanka;Watanabe, Keigo;Izumi, Kiyotaka;Kiguchi, Kazuo
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.347-355
    • /
    • 2002
  • Obstacle avoidance of underactuated robot manipulators using switching computed torque method (SCTM) is presented. One fundamental feature of this novel method is to use partly stable controllers (PSCs) in order to fulfill the ultimate control objective. Here, we use genetic algorithms (GAs) to acquire the optimum switching sequence of the control actions for a given time frame with the available set of elemental controllers, depending on which links/variables are controlled. The effectiveness of the concept is illustrated by taking a three-degrees-of-freedom (DOF) manipulator and showing enhanced performance of the proposed control methodology.