DOI QR코드

DOI QR Code

Formation Control of a Group of Underactuated Autonomous Underwater Vehicles

작동기수가 부족한 자율무인잠수정 그룹의 편대제어기법

  • 이계홍 (한국해양연구원 해양시스템안전연구소 해양시스템연구부) ;
  • 전봉환 (한국해양연구원 해양시스템안전연구소 해양시스템연구부) ;
  • 이판묵 (한국해양연구원 해양시스템안전연구소 해양시스템연구부) ;
  • 임용곤 (한국해양연구원 해양시스템안전연구소)
  • Published : 2008.12.01

Abstract

This paper presents an asymptotic formation control scheme for a group of underactuated autonomous underwater vehicles (AUVs) where only three control inputs - surge force, yaw moment and pitch moment are available for each vehicle's six degree of freedom (DOF) underwater motion. Usually, the dynamics agents applied in most of the formation algorithms presented so far have been modeled as particle systems, which is a simple double-integrator system. Therefore, these algorithms cannot be directly applicable to the practical systems, especially to the underwater vehicles whose dynamics are highly nonlinear. Moreover, the vehicles considered in this paper are underactuated. The formation control is derived using general potential function method, and the corresponding potential function consists of two parts: interactions between vehicles and virtual-leader following. Proposed formation scheme guarantees asymptotic local stability of closed-loop system. Numerical simulations are carried out to illustrate the effectiveness of proposed formation scheme.

Keywords

References

  1. D. D. Edwards, T. A. Bean, D. L. Odell, and M. J. Anderson, 'A leader-follower algorithm for multiple AUV formations,' Proc. of Workshop on Autonomous Underwater Vehicles, 2004 IEEE/OES, pp. 40-46, 2004
  2. K. Watanabe and A. Nakamura, 'A design of tiny basin test-bed for AUV multi agent,' Proc. of IEEE/MTS Oceans 2005, pp. 1002-1008, 2005
  3. E. Fiorelli, N. E. Leonard, P. Bhatta, A. Paley, R. Bachmayer, and D. M. Frantantoni, 'Multi-AUV control and adaptive sampling in Monterey Bay,' IEEE Journal of Oceanic Engineering, vol. 31, no. 4, pp. 935-948, 2006 https://doi.org/10.1109/JOE.2006.880429
  4. C. W. Reynolds, 'Flocks, herds, and schools: A distributed behavioral model,' Proc. of ACM SIGGRAPH'87, pp. 25-34, 1987
  5. N. E. Leonard and E. Fiorelli, 'Virtual leaders, artificial potentials and coordinated control of groups,' Proc. of the 40th IEEE Conference on Decision and Control, pp. 2968-2973, 2001
  6. R. Olfati-Saber, 'Flocking for multi-agent dynamic systems: algorithms and theory,' IEEE Transactions on Automatic Control, vol. 51, no. 3, pp. 401-420, 2006 https://doi.org/10.1109/TAC.2005.864190
  7. K. D. Do, 'Bounded controller for formation stabilization of mobile agents with limited sensing ranges,' IEEE Transactions on Automatic Control, vol. 52, no. 2, pp. 569-576, 2007 https://doi.org/10.1109/TAC.2007.892382
  8. T. R. Smith, H. Hanbmann and N. E. Leomard, 'Orientation control of multiple underwater vehicles with symmetry-breaking potentials,' Proc. of the 40th IEEE Conference on Decision and Control, pp. 4598-4603, 2001
  9. W. B. Dunbar and R. M. Murray, 'Model predictive control of coordinated multi-vehicle formations,' Proc. of the 41st IEEE Conference on Decision and Control, pp. 4631-4636, 2002
  10. J. Fax and R. M. Murray, 'Information flow and cooperative control of vehicle formations,' IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1465-1476, 2004 https://doi.org/10.1109/TAC.2004.834433
  11. Z. P. Jiang, 'Global tracking control of underactuated ships by Lyapunov's direct method,' Automatica, vol. 38, no. 2, pp. 301-309, 2002 https://doi.org/10.1016/S0005-1098(01)00199-6
  12. K. D. Do, Z. P. Jiang, and J. Pan, 'Underactuated ship global tracking under relaxed conditions,' IEEE Transactions on Automatic Control, vol. 47, no. 9, pp. 1529-1536, 2002 https://doi.org/10.1109/TAC.2002.802755
  13. K. D. Do and J. Pan, 'Global tracking control of underactuated ships with nonzero off-diagonal terms in their system matrices,' Automatica, vol. 41, no. 1, pp. 87-95, 2005
  14. E. Fredriksen and K. Y. Pettersen, 'Global k-exponential way-point maneuvering of ships: Theory and experiments,' Automatica, vol. 42, no. 4, pp. 677-687, 2006 https://doi.org/10.1016/j.automatica.2005.12.020
  15. J. H. Li, P. M. Lee, B. H. Jun, Y. K. Lim, 'Point-to-point navigation of underactuated ships,' Automatica, vol. 44, no. 12, pp. 3201-3205, 2008 https://doi.org/10.1016/j.automatica.2008.08.003
  16. J. N. Newman, Marine Hydrodynamics. The MIT Press, Cambridge, Massachusetts, USA, 1977
  17. J. Latombe, Robot Motion Planning. Norwell, MA: Kluwer, 1991
  18. E. Rimon and D. E. Koditschek, 'Exact robot navigation using artificial potential function,' IEEE Transactions on Robotics and Automation, vol. 8, no. 5, pp. 501-518, 1992 https://doi.org/10.1109/70.163777
  19. T. Prestero, 'Verification of a six-degree of freedom simulation model for the REMUS autonomous underwater vehicles.' Masters Thesis, Department of Ocean Engineering and Mechanical Engineering, MIT, 2001
  20. R. Marthiniussen, K. Vestgard, R. A. Klepaker, and N. Storkersen, 'HUGIN-AUV concept and operatinal experience to date,' Proc. of IEEE/MTS Oceans'04, pp. 846-850, 2004
  21. T. I. Fossen, Marine Control Systems. Trondheim, Norway: Marine Cybermetics, 2002
  22. 이계홍, 전봉환, 이판묵, '장애물회피를 동반한 작동기수가 부족한 자율무인잠수정 그룹의 안정한 대형제어기법,' Proc. of CASS 2007, pp. 203-209, 2007
  23. J. H. Li and P. M. Lee, 'Stable schooling for multiple underactauted AUVs,' Proc. of IFAC World Congress, pp. 15022-15027, 2008
  24. M. Krstic, I. Kanellakopoulos, and P. Kokotovic, Nonlinear and Adaptive Control Design. John Wiley & Sons, Inc., New York, 1995
  25. 이판묵 외, 차세대 심해용 무인잠수정 개발 (II). 한국해양연구원 해양시스템안전연구소, 기술보고서, 한국, 2003