• Title/Summary/Keyword: Uncertain Nonlinear Systems

Search Result 253, Processing Time 0.031 seconds

A Fault Detection System Design for Uncertain Fuzzy Systems

  • Yoo, Seog-Hwan
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.107-112
    • /
    • 2005
  • This paper deals with a fault detection system design for uncertain nonlinear systems modelled as T-S fuzzy systems with the integral quadratic constraints. In order to generate a residual signal, we used a left coprime factorization of the T-S fuzzy system. From the filtered signal of the residual generator, the fault occurence can be detected effectively. A simulation study with nuclear steam generator level control system shows that the suggested method can be applied to detect the fault in actual applications.

  • PDF

Robust H${\infty}$Fuzzy Control of Nonlinear Systems with Time-Varying Delay via Static Output Feedback

  • Kim, Taek-Ryong;Park, Jin-Bae;Joo, Young-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1486-1491
    • /
    • 2005
  • In this paper, a robust H${\infty}$ stabilization problem to a uncertain fuzzy systems with time-varying delay via static output feedback is investigated. The Takagi-Sugeno (T-S) fuzzy model is employed to represent uncertain nonlinear systems with time-varying delayed state, which is a continuous-time or discrete-time system. Using a single Lyapunov function, the globally asymptotic stability and disturbance attenuation of the closed-loop fuzzy control system are discussed. Sufficient conditions for the existence of robust H${\infty}$controllers are given in terms of linear matrix inequalities.

  • PDF

Output Feedback Control of a Class of Nonlinear Systems with Sensor Noise Via Matrix Inequality Approach (행렬 부등식 접근법을 이용한 센서 노이즈 비선형 시스템의 출력궤환 제어)

  • Koo, Min-Sung;Choi, Ho-Lim
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.8
    • /
    • pp.748-752
    • /
    • 2015
  • We present an output feedback controller for a class of nonlinear systems with uncertain nonlinearity and sensor noise. The sensor noise has both a finite constant component and a time-varying component such that its integral function is finite. The new design and analysis method is based on the matrix inequality approach. With our proposed controller, the states and output can be ultimately bounded even though the structure of nonlinearity is more general than that in the existing results.

Adaptive Tracking of Uncertain Robotic Systems (불확실한 로보트 시스템의 적응제어)

  • 김홍석;최종호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.9
    • /
    • pp.944-955
    • /
    • 1990
  • A high-performance robotic controller is proposed for uncertain robots by using an adaptive control method, which guarantees the boundedness of uncertain systems with partially known uncertainty bounds. In order to improve the tracking performance of the robotic controller, a linear compensator is introduced to the robotic system which has been linearized via a nonlinear feedback. The above adaptive method is then utilized to guarantee the ultimate boundedness of the tracking errors. The performance of the robotic controller is compared with that of the computed torque method by computer simulations under uncertain environments. The simulation results show that the proposed method gives better performance than the computed torque method. Since the proposed method has a small number of parameters to be estimated, the controller is simpler to implement than other existing adaptive controller for robots. Hence, the proposed robotic control method is expected to be well suited for high-performance operation of robots under uncertain environment.

  • PDF

An Integral-Augmented Nonlinear Optimal Variable Structure System for Uncertain MIMO Plants

  • Lee, Jung-Hoon
    • Journal of IKEEE
    • /
    • v.11 no.1 s.20
    • /
    • pp.1-14
    • /
    • 2007
  • In this paper, a design of an integral augmented nonlinear optimal variable structure system(INOVSS) is presented for the prescribed output control of uncertain MIMO systems under persistent disturbances. This algorithm basically concerns removing the problems of the reaching phase and combining with the nonlinear optimal control theory. By means of an integral nonlinear sliding surface, the reaching phase is completely removed. The ideal sliding dynamics of the integral nonlinear sliding surface is obtained in the form of the nonlinear state equation and is designed by using the nonlinear optimal control theory, which means the design of the integral nonlinear sliding surface and equivalent control input. The homogeneous $2{\upsilon}(\kappa)$ form is defined in order to easily select the $2{\upsilon}$ or even $(\kappa)-form$ higher order nonlinear terms in the suggested sliding surface. The corresponding nonlinear control input is designed in order to generate the sliding mode on the predetermined transformed new surface by means of diagonalization method. As a result, the whole sliding output from a given initial state to origin is completely guaranteed against persistent disturbances. The prediction/predetermination of output is enable. Moreover, the better performance by the nonlinear sliding surface than that of the linear sliding surface can be obtained. Through an illustrative example, the usefulness of the algorithm is shown.

  • PDF

A Backstepping Design with Sliding Mode Control for Uncertain Discrete System

  • Park, Seung-Kyu;Kim, Min-Chan;Kim, Tae-Won;Ahn, Ho-Kyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.63.6-63
    • /
    • 2002
  • The technique of backstepping have can avoid cancellations of useful nonlinearities. It is widely used in nonlinear adaptive control. But it is difficult to use this technique for uncertain nonlinear systems. Sliding mode control has robustness and application with feedback linearization. This paper shows that the robustness can be used for back stopping technique to solve the uncertainty problem and to improve the scalar design problem using Control Lyapunov function which is the motivation of back stepping technique with recursive design for high-order systems. In the respect of SMC, the result of this paper does not need to satisfy the matching condition.

  • PDF

Robust Adaptive Controller Free from Input Singularity for Nonlinear Systems Using Universal Function Approximators

  • Park, Jang-Hyun;Yoong, Pil-Sang;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.95.4-95
    • /
    • 2001
  • In this paper, we proposed and analyze an robust adaptive control scheme for uncertain nonlinear systems using Universal function approximators. The proposed scheme completely overcomes the singularity problem which occurs in the indirect adaptive feedback linearizing control. No projection in the estimated parameters and no switching in the control input are needed. The stability of the closed-loop systems is guaranteed in the Lyapunov standpoint.

  • PDF

Optimal Design of Nonlinear Structural Systems via EFM Based Approximations (진화퍼지 근사화모델에 의한 비선형 구조시스템의 최적설계)

  • 이종수;김승진
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.122-125
    • /
    • 2000
  • The paper describes the adaptation of evolutionary fuzzy model ins (EFM) in developing global function approximation tools for use in genetic algorithm based optimization of nonlinear structural systems. EFM is an optimization process to determine the fuzzy membership parameters for constructing global approximation model in a case where the training data are not sufficiently provided or uncertain information is included in design process. The paper presents the performance of EFM in terms of numbers of fuzzy rules and training data, and then explores the EFM based sizing of automotive component for passenger protection.

  • PDF

Adaptive Controllers for Feedback Linearizable Systems using Diffeomorphism

  • Park, H.L.;Lee, S.H.;J.T. Lime
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.443-443
    • /
    • 2000
  • A systematic scheme is developed fer the design of new adaptive feedback linearizing controllers for nonlinear systems. The developed adaptation law estimates the uncertain time-varying parameters using the structure of diffeomorphisrn. Our scheme is applicable to a class of nonlinear systems which violates the restrictive parametric-pure-feedback condition [4]-[6].

  • PDF

Robust Intelligent Digital Redesign of Nonlinear System with Parametric Uncertainties (불확실성을 갖는 비선형 시스템의 강인한 지능형 디지털 재설계)

  • Sung, Hwa-Chang;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.138-143
    • /
    • 2006
  • This paper presents intelligent digital redesign method for hybrid state space fuzzy-model-based controllers. For effectiveness and stabilization of continuous-time uncertain nonlinear systems under discrete-time controller, Takagi-Sugeno(TS) fuzzy model is used to represent the complex system. And global approach design problems viewed as a convex optimization problem that we minimize the error of the norm bounds between nonlinearly interpolated linear operators to be matched. Also, by using the bilinear and inverse bilinear approximation method, we analyzed nonlinear system's uncertain parts more precisely. When a sampling period is sufficiently small, the conversion of a continuous-time structured uncertain nonlinear system to an equivalent discrete-time system have proper reason. Sufficiently conditions for the global state-matching of the digitally controlled system are formulated in terms of linear matrix inequalities (LMIs). Finally, a TS fuzzy model for the chaotic Lorentz system is used as an . example to guarantee the stability and effectiveness of the proposed method.