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An Integral-Augmented Nonlinear Optimal
Variable Structure System for Uncertain MIMO
Plants

Jung-Hoon Lee™™

Abstract

In this paper, a design of an integral augmented nonlinear optimal variable structure system(INOVSS) is
presented for the prescribed output control of uncertain MIMO systems under persistent disturbances. This
algorithm basically concerns removing the problems of the reaching phase and combining with the nonlinear
optimal control theory. By means of an integral nonlinear sliding surface, the reaching phase is completely
removed. The ideal sliding dynamics of the integral nonlinear sliding surface is obtained in the form of the
nonlinear state equation and is designed by using the nonlinear optimal control theory, which means the
design of the integral nonlinear sliding surface and equivalent control input. The homogeneous 2v (k) form is

defined in order to easily select the 2v or even k-form higher order nonlinear terms in the suggested sliding
surface. The corresponding nonlinear control input is designed in order to generate the sliding mode on the
predetermined transformed new surface by means of diagonalization method. As a result, the whole shding
output from a given initial state to origin is completely guaranteed against persistent disturbances. The
prediction/predetermination of output is enable. Moreover, the better performance by the nonlinear sliding
surface than that of the linear sliding surface can be obtained. Through an illustrative example, the usefulness
of the algorithm is shown.
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aspects, the linear dynamics can be not sufficient
but the additional nonlinear dynamics are more
desirable to the sliding dynamics[12]. For the
control of a class of the nonlinear system, the
desired behavior in the output naturally requires the
use of the nonlinear sliding surface. Moreover, even
of the
nonlinear dynamics can be assigned in order to

for the control linear system, additional
obtain fast transient dynamics in [11] and [12].
Unfortunately, the reaching phase problems exist.
During this reaching phase, the controlled systems
may be sensitive to the parameter variations and
external disturbances because the sliding mode is
not realized[13]. And it is difficult to find the
performance designed in the sliding surface from
the real output.

Compared to the established works on the
VSS, few researches deal with the problems of the
reaching phase. One alleviation method is the use of
the high-gain feedback[14]. This has the drawbacks
related to the high-gain feedback, for example
sensitivity to the unmodelled dynamics and actuator
saturation[13]. The adaptive rotating or shifting of
the sliding surface is suggested to reduce the
reaching phase problems in [2][15], and the sliding
surface segmentally connected from a given initial
condition to the origin is also suggested[16]. But
these changing techniques and segmented sliding
surface are applicable to only second order systems
and those outputs are not predictable. In [17], the
exponential term is added to the conventional linear
sliding surface is order to make s(¢t)=0 at t=0 for
removing the reaching phase.

In this paper, an integral-augmented nonlinear
optimal variable structure system(INOVSS) for the
control of multi-input multi-output(MIMO) systems.
The the
determination of the integral-augmented nonlinear

design of such system involves

surface and the corresponding nonlinear
The suggested sliding surface is

sliding
input.
augmented by the integral with the integrand of the

control

state itself and higher order nonlinear terms of the
state so that the resulting nonlinear sliding surface
can offer significant advantages over the linear one
in a variety of circumstances such as state or
control constraint. For the design of the nonlinear
sliding surface, the nonlinear optimal technique is

the
performance index[181[19]. The homogeneous 2v (k)

introduced with minimizing non-quadratic
form is defined in order to easily select the 2v or
even k-form higher order nonlinear terms in the
suggested sliding surface. Using the diagonalization
method{1][4], the stabilizing control is designed for

guaranteeing  the  chosen  nonlinear  optimal
performance involved in the integral nonlinear
sliding surface, whereas the previous nonlinear

optimal controller{18)-[21] does not consider the
performance robustness against the uncertainties and
external disturbances. The performance robustness
of the algorithm is shown by means of the stability
analysis on the sliding mode on the transformed
surface. The effectiveness of the INOVSS such as
no reaching phase, the full robustness for the whole
trajectory, the improved steady state performance
without overshoot, satisfactory perforrmance under
state constraint as well as exact predictable output.
Finally an example is presented to show the
effectiveness of the algorithm compared with a VSS

having the integral linear sliding surface.

II. A New Vatiable Structure Controller

2.1 Description of Plants and Actuators

The problem of designing the INOVSS controller is

considered for an wuncertain linear multivariable

system:

M) = (A+ AA(Y;t)) - Yt) (1)
+(B+AB(Y;t)) - UY;t)+D(Yit) Y°= ¥(0)

where Y(t)€R™ is the state, AER"™™  and

BER™™ are the system matrices, AA(Y;t)ER"*"
and ABER"™™ represents for the uncertainties as
the modeling D(Yt) is the
disturbance, and UER™ is
determined. The goal of the

external

the control to be
INOVSS controller
design is to asymptotically stabilize this uncertain

error,

MIMO system with quality of the nonlinear optimal
performance.

Basically, the assumptions are made as follows!
Assumption 1:

The pair S(A4,B) is completely controllable
Assumption 2:(Matching condition)

The AA(Yt) and AB(Yit)
disturbance D(¥;t) satisfy the matching condition,

uncertainties and
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.e.,
R(AA(Yt)) c R(B)

R(AB(Yt)) C R(B)

R(AD(Yt)) < R(B)

Above all, for effective formulations, X(t) as a new
state is transformed from the original Y{t) using
the nonsigular coordinate transformation{5][22] 7

X(t) = [fé]: Yit) - ¥i8) (2a)
such that
100 - B0 = o) (2b)

where X€R"™™ and X,€R™ are the partition of
XER". (2a), the 1)
represented in regular form[23] in X space as
X)) =4, - X, () + 4, - X, ()

X(t) = (Ay + A4y (1) - X, (1) + (A + A4y () - X,(t)
+(By+ AB) (t)) - U(t)+ Dy (X.t)

Using systemn can be

(3)
rank(B,) =m, A ERNTmyxtnmm),
AmeR(n—m)XW‘ Ay ER™X0™ and A, €R™T
are known constant matrices transformed from the
original 4 in (1), and X and X; are the initial
Y®. The
assumption on the boundedness of the uncertainties

where

conditions also  transformed from

and disturbance in (3b) is made as
Assumption 3:

The uncertainties and disturbance in (3) can be
represented and bounded as the following

AA, =B, - Ad,,, 1A4,, | <ay,, (4a)
Ady)' = B, - Ady, |AA22J <0y, (4b)
AB' =B, + AR, IAB,| <8, <1(diagonal) (4c)
AD) =R, - AD,, \ADQU\ <, (4d)
for i, j=1,2,...,m and k=1,2,...,(n—m).

Now to the system (3), the integral terms,
X,€ER’, r =n are augmented in general form

Xo(t) =A, - X(¢t) (5)

=4y '/Yl(t)+A02 - X, (t) X(?
where A, =[Ay 1 Ap|ER™™ is the coefficient

matrix for dimensional matching and Xj is the

initial condition for X,. Then, the nominal system

3
of (3) with (5) is described as
X,(t) = Ag; + X, (t)+ Ay, X, (t) (6a)
X](t):An ')(1(t)+A12 X?(t) Xl0 (6b)
X,(t)=Ay - X, (t)+ 4y - X () + B, - UL) X0 (60)

The choice of A), and A4y is included in next
design of the integral-augmented nonlinear sliding
surface

2.2 Integral-Augmented Nonlinear Sliding Surface

sliding surface S:R"—R™ for

multi-input systems is composed of the set of the

The conventional

m linear sub surface as

SX)=C"-X=C X +GX,(=0) (N
where rank(G,)=m and using S(:)=0 and (6b),
its ideal sliding dynamics as the reduced subsystem
with (n—m)—th order can expressed as
"Yl(t) =(4,-4,G'q) - X,

X @) t=t =20

Since the system (1) is controllable, the pair
(AH,A12) is alos controllable[6]. Using this fact, the

(8

linear pole assignment are applicable to the system
(8) for the design of the sliding surface. However,
the dynamics of (8) is not defined from a given
initial condition X] but the state when reaching

instant X, (t,), hence there can be reaching phase
for the initial X?&S(-)=0 and the output can not

be exactly predictable. Moreover, since the surface
of (7) only uses the linear elements, it is difficult to
the  conflict the
requirements of the static and dynamic accuracy

resolve between opposing
which are encountered when designing the linear
sliding surface.

In this paper, an integral-augmented nonlinear
S( . ):Rn+r_)Rm
composing of three terms as

sliding surface is proposed by

where  S;(-):R"—R™, S(:):R—R™, and
Sy(-):R"—>R™ are the conventional linear,

integral-augmented linear, and intentionally nonlinear
integral-augmented terms, respectively as
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S (X)=C - x= [2% . mj] (9a)
j=1
=0 X+ X
T : !
SxX)=c- X = [Zcﬁj . f Ij(T)dT} {9b)
i=1 0
=0 - Xy + Gy - Xy
¢
s,00=cf - [ etxtar (90)
0

where G(-) is a nonlinear homogeneous function
determined later and C;, C, and Cy are constants
as the design parameters. Since it is difficult to
split the initial value into the linear and nonlinear
integral-augmented terms, the total integral action is

considered as
t

Xy= [ 6 - X0+ G - Gxwar (10)
0

Xin
S(X%) =0 and zeros of the integral terms S, and Sy

and let denote its initial condition. For

in steady state, Xﬁv should satisfy

X?v == [Zlcuj * z?}
=
=0y - XIO‘CL:; : Xzo

The total integral state converges to zero from this

(11

finite value and its rate convergence depends upon
the relationship between C;, Cj, and Cy. Because of
S(X%) =0 any X'eR", the
dynamics of (9) can be defined from any initial
X°ER". Thus, there can be no reaching phase, the
controlled system can slide from any given initial
condition X°€R" the full
robustness for the whole trajectory can be obtained,

for initial sliding

to the origin, and
furthermore the output of the controlled system can
be predictable.

The coefficient of (9), C;, C, and Cy and the
structure of G(X) will be designed using nonlinear
optimal technique with guaranteed stability in the
surface (9). In the sliding mode, (12) is satisfied
5(X)=0 Sx)=0 (12)
From this fact, the ideal sliding dynamics of the

and

sliding surface with m— th order can be obtained

as
X(t)=4,, - X, () +A4,, - X,(t) (13a)
X,(8) == G [(Cy Ay + Gp) - X, (8)

+{(C Ay + G - X, () + Cy - GX(t))

(13b)

or after manipulating
Xt)=4-XE)+T-vlt) X° (14)
where AER"™", I'ER"*™, and vER™.

A A 0
A= ‘2] F=[ } (15)

[A21 A22 ’ Bz
v(t)=—K, - X, (t)~ K, - X,(t) - K, - G(X(t)) (16)
where
K =Bz¥1{A21 +%1(Q1A11+Cn)} (17a)
Ko B Ay + G (G + G} (17b)
K =BGy Oy (17c)

The solution of (13) or (14) for a given X0 gives
the integral nonlinear surface coinciding with (9).
And using solution of (13) or (14), it is possible to
predict/predetermine the real output. Since, as can
be seen in (14), it equals to the dynamics of the
nominal system (6b) and (6¢), the design of the
sliding surface is the performance design to the
nominal systems of (3), and the reverse argument
also holds.

Now, the nonlinear performance index function is
defined as

J= f tXTQX+ v R+ M X(7))dr (18)
0

where Q=Q_Ta%0 such that the pair (Aa) and
the output y=M(X(t)) are observable, R>0, and
MX(t) is  a

positive-definite function. A C' function V:R"—R

homogeneous symmetric

is also defined as

V(X)=X"PX+ ZX) (19
such that

0)=0 (20a)
MX)>0 XER® X=0 (20b)
2 ‘;(t ) o (200)
where Z(X) is a homogeneous positive-definite

function. Then, the optimal coefficient XA and the

structure of G(X) can be designed in Theorem 1.
Let ¥ imply the gradient with respect to X.

Theorem 1: The optimal coefficient vr=¢(-), ie,
K, and the structure of G(X) for (16) with respect
to (18) and (19) are given by
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K=|K, K)|=R'I'P (21a)

K,Gx)= %R_ . vZXx) (21b)

where P>0 is the solution of the Reccati equation
and VZ(X) the gradient of ZAX)
such that

ATP+ PA+ Q- PWP=0 (22a)
VAX) - X+Mz) (22b)
- —}VZ(X) - W VAX)=0
where
&= [A—p]
W=TR™'I'>0
and final cost becomes
J+ VX = X" PXO+ Z(X°). (23)

Proof: The derivative of V{X) with respect to time
presents

VX)) = l2XTP+ v X) | (AX+ 1Y)
Using (21a) and (21b), (24) becomes

(24)

WX) = [2XTP+vZX)||® - X—% W- vAX)
=XT[Pp+37P| - X+VAX)S - X
+XTPWY LX) — %VZ(X) CWvAX). (25)

From (22¢) and (22d), it follows
VX)) =— XTQX— v R/— M(X)
== L(X(t),6(t),t)

which implies that W -) is negative for all time,

(26)

ie. the closed loop system (14) with (16) is
asymptotically stable. Moreover, the optimal cost
becomes
J=/ — Undr (27)
0
= x°'Px'+ Z(X°)

Now, a Hamiltonian is defined as

HX,VVI(X)v) = LX¢,t)+VVT(X) - [AX+1V]
= XTQX+ v Rv+ M(X)+ [2X 7P+ v Z(X))(AX+ I'v) (28)

a
and by letting EH( <, +,+)=0, (2la) and (21b)

can be obtained. Furthermore with (22a) and (22b),
it can be shown that

HX, v VX)) = v=¢(- )] Rlv—¢(-)]
which completes the proof of Theorem 1.

(29)

At this point, the special function for the candidate
of G(X) are defined in the following.

Definition 1: k(respectively,
2v)-form[18]

Let a function ¢:R">R” a homogeneous k

homogeneous

(respectively, 2v)-form if k is positive integer and
Pla- X)=d"yp(X) al a€R and XER".
Particularly, when p=1, @ homogeneous k(2v)
-form @ : R"—R is non negative definite if 4(X) =0
for all XeR",

for

To investigate the existence of the solution such
that (22b), (22b) can be represented by supposing
that for v=2,3,....¢(k=4,5,...,2q), M,y is given

non-negative definite homogeneous k(2v)—form as

V1) (X)® « X+ My, ) (X) =0 (30)
1)'—‘2,3,.‘.,q(k= 4,5,...2(1)

where
M) = 30, (5) for 2v-form (31a)

H1¥vzw. wovzw
=2

=Y um+ iz wovzm
k=4 =4

for k-form (31b)

for 2v-form (32a)

for k-form (32b)

The existence of the solution for (30) is reviewed in

Lemma 1

Let R ™"

M: R"—R be a homogeneous

be Hurwitz matrix and
k(2v)-form. Then,
there exists k{2v)-form

Z: R*—R such that (30). Furthermore, if M) is a
non-negative(resp. positive) definite, then, Z{ +) is a

Lemma 1:

a unique homogeneous

non-negative(resp. positive) definite.

Proof: For convenience, define the Kronecker
sum(24] as

ko _

oA =APAD.. DA (33)

where A appearing k times and so forth, and
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-1
define M(X) =4 X¥ where ¢=—¢( @kA) where

e;c 4 is invertable since A (cad hence Eéf A) is
asymptotically stable. Now, note that
VAX)P - X= 45%(,\’“”,4 - X)

=5(ADAD...0A) XY

:45( G;CA ) it
=1 xe]
=-MX). (34)
Thus, the feature of M(X) is the same that of
G(X).
In Lemma 1, M(X) is a positive definite

homogeneous k-form, where k is necessary even.
Futhermore, let Z(X) be the positive-definite, then,
since VAX)® - X<0 for XER", X=0, it follows
that ZX) is a Lyapunov function for (19). Finally,
one can find a stable G(X) using 2v~ or even k
~form M{-) and Z -). In {12}, a homogeneous odd
k-form is selected for the nonlinear term in the
sliding surface without integration.

Now, the coefficient matrices of the sliding
surface (9) can be obtained from (17a)-(17¢), (21a),
and (21b) as

CL_21(CL1A11+011)= BK — 4, (35a)
' (G + Cp)= B K, — Ay, (35b)

Ll (Cy - GX))=BE,GX) = %R‘ 'r"vAx) (350

Particularly, if C, =1, without loss of generality,
then simply

Cudn+ Gy = BK — 4y (36a)
Cndypt Gy =BK — Ay, (36b)
Cy=BE=5R T VAX)=GX), (36¢)

Therefore, one can determine the optimal coefficient
matrices of the integral nonlinear sliding surface (9).
One example on the nonlinear dynamics for the
integral nonlinear sliding surface will be given.

Example 1: Consider that V{X) be of the form

VIX) = XTPX+ %(XTEX)2 750 37

with v=¢=2, (19)  with

Ax)=1/2(x72x)*. From (22b), one can obtain

which corresponds to

MX)+(X7zx) - X" (67 2+ 8)X (38)
—(xTzx) - XTZWzx=0

Hence, if one select Z such that

(6 Tz+ Z0)+ R=0 (39)

for R>0, then M(X) becomes

MX)=(xT2x) - x"(R)x (40)
+(x7zx)" . x"zwWzx

Finally

Gx)=(x"zx) - Zzx" (41)

which results in the stable design of the nonlinear
dynamics (9¢) for the sliding surface of (9). Thus,
the nonlinear term G(X) in (9¢c) can be selected by

the choice of R in (39) through determination of
MX).
2.3 Stabilizing

Input and Stability Anaysis

The control input should be designed to satisfy the
existence condition of the sliding mode, but it is not
simple for multi input plants. The vector version of
the existence condition of the sliding mode, as well

known, is

lims, -§i<0 i=12,...,m (42)
s—0

or

s—0

so called direct switching approach in [5). It is,
however, difficult to use these condition directly for
uncertain general multi input plants because it is
dependent of the structure of CL2BZ(X,t). The looser
(42)
approach

and (43) so called Lyapunov
the
approach for multi-input nonlinear systems is as
follows[5]:

condition than

function including norm-bounded

s, 8,8y + 8gyets, -5, <O (44)

S§T5= Zsi . 3'1:
=1

If (42) and (43) are satisfied, then (44) is, but its
reciprocal argument generally does not hold[5].

In this paper, based on Assumption 1, 2, 3,

be utilized with

diagonalization method will

Theorem 2

Theorem 2: The equation of the sliding mode is
with the
transformations

invariant respect to nonlinear



An Integral-Augmented Nonlinear Optimal Variable Structure System for Uncertain MIMO Plants

S(X)=H (Xt) - $(X), detH (X,t) =0  (45a)

U'(X)=H,(Xt) - (X)), (45b)

where det denote determinate of a matrix.

detH,(X,t) =0

Proof: See [1] or [4]

This theorem means that the sliding mode is
governed by the same (9) if the components of the
controlled vector undergo discontinuity on the new
transformed surface S (X)=0 or the components of
the new control vector U'(X) undergo discontinuity
on the already chosen surface S(X)=0.

SX)=0 5(x) =0,
consider a corresponding control function having the

With  transforming into

form of

UX,, X,) = U, (X, X;) + AUX,, X;) (46)

where U, (X;,X,) is the equivalent control for the

nominal system of (3) directly determined according

to the choice of the

surface (9) as

Ueq (X17X2) =" [CLZB‘Z]_I{(CMAU + Cppdy + CLl) - X
+ (CLIAlz +Cpadyy + CL?) Xt QVG(X)} “n

which governs the desired main nonlinear dynamics

integral nonlinear sliding

to be optimal for (18), and AU cancels out the
uncertainties and external disturbances in order to
maintain the sliding mode on pre-specified surface

form X° to origin

AU= (XI,XZ)=~{J/1 - X+, - X, 48 - GLX)
+6-sgn(8)+k 8§

implies the transformed a new sliding

} (48)

where S"
surface by H, (Xt)=[C,B]"" as

s'=[c,B|" -5 (49)
and the switched gain matrices $%ER™™",
geRm>m-m)  geRm™™  and § and K
EdiaR"*™] can be selected by the inequalities as
follows:
>0 for s -z, >0
Ty = LY 5
0i [<O for s, » 3y, <0 (50a)
> oot By Bu)/0=py)  for sl -z, >0
Prax {< (oo 4By » Ky)/ (1=5y)  for 5] -2y, <0 (50b)
> oy + 8y - B/ (=) for 53y >0
Y _{‘_(0‘2211 + B Klzl)/(l “ﬂzz) for 5: cZy <0 (SOC)

[ > (agg + By - K ) (1=By)  for  s; - glx), >0

2y, 7{4—(112;:1"[?21~Kil:)/(1—ﬂ?l) for s -gle), < (50d)
_ [/ (1=8y) for s >0

b= {‘_721/(1—[321-) for s; <0 (50e)

>0 (50f)

for 4,0=1,2..,m, j=1,2,.,r, k=1,2,...,(n—m),

and z=1,2,..,n. From (2b) and (36), the original
control for (1) can be found as

Uy(V)=UeX)y_ p. p=U(T- V) (61
The stability of the closed loop system and the
existence condition of the sliding mode will be
investigated.

Theorem 3: The closed loop system (1) with (51)
is totally asymptotically stable with respect to
S (X) =0, eventually to origin of (n+ 7‘) order
state space provided that (9) is asymptotically
stable.
Proof: Take Lyapunov candidate function as
x)=1/28"- 5" (52)
From (3) and (46), the derivative of S *(t) becomes
§'()= (Crdn + Cppdy + Gy) - X,

+ (q,lAIZ + Gy, + sz) - X+ QVG(X)

+0,,(X)

+ [AA,, - X, + AA,, + X, + D, (X;t) (53)

— AR, (X)+AUX)

Rearranging (53), it follows

S)=—9,- X,
( (CLIAU + Cradyy + Cll)_ A4, +(1m _ABz) N Wl] "
- [ABz(CLsz)_ I(CLIAI‘I + Crpdyy + CD)_AAE2+(IW —AB,)- LI’z] '
(CraB)

— [5sgn(5")2—D2(X,t)]

x-S (54)
Finally, one can easily show that
s sl< Ky s i=1,2.,m. (55)

i
Then from (55), the algorithm guarantees the sliding
mode at every point on the new sliding surface.
And therefore, based on theorem 2, the motion
equation in the sliding mode on the sliding surface
)]
asymptotically stable to the new sliding surface and

is invariant, and the controlled system is

eventually to the origin in .+ r state space.

By Theorem 3, the optimal performance designed
by Theorem 1 for the nominal system of (1) is
for all and external

guaranteed uncertainties
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disturbance. As a result, the choice of the sliding
surface implies the nonlinear optimal performance
design, and control input selection does the robust
stabilizing design for the pre-designed performance
against the system uncertainties and disturbance, i.e.
design separation. In addition, it does not need to
consider the reachability to the sliding surfacef25]
during the reaching phase. :

To show the
algorithm, an example will be presented

effectiveness  of  the

. tHustrative Example
The control of an example uncertain MIMO plant
is presented for the purpose of the performance
with the
intentional nonlinear term in the INOVSS algorithm.
A 4—th order MIMO plant is considered as

comparison  between and without

algorithm will be designed. Above all, @ and R in
(18) is selected as

10000
01000
0010
0001

which results in the linear coefficient matrices of
(16), &,

Q= (60)

R [0.1 o]

001

i=1, 2, 3 such as

_ [11.09902 1.09902

& =1 109902 1.09902] (61a)
_ [5.67102 0.19380

5= [0.19380 5.67102] (61b)
_[0 0 50 0

Kf‘_[o 0 o0 5.0}' (61c)

Next, to specify the stable nonlinear element G(X)
in (16), the form of Z(X) in (19) is chosen as the
in (37). (14)
resulted from modifying R in (39), one can
determine the M(X) and G(X) so that (59) is

same By analyzing the dynamics

0 0 10 0 0 0 dsfied
. 0 0 01 0 0 0 satisfied as
el P R o TR B R PA ) (56) _ _ e
() —an(t)00 "0 ) @) M(X)=(XT_ZX)(X_TRX)+(XTZX)XTZWZ)( (62)
T
Table 1 Selected control gains ¢x)=(x"zx) - zx" (63)
WOI Wl WZ WS
é K
To1 Zo2 Z L2 T3 Ty g(z); | g(z),
+ 1 13 4 10 0 6 0 25
AU, 0.1
- -1 0 -13 -4 -10 0 -6 0 -25
+ 0 1 4 13 0 10 0 6 25
- 0 -1 -4 -13 0 -10 -6 -25
where X"=[z, =, z, =,| is the state, system where
parameters a,;(¢) gains &(¢), and disturbance d;(¢) B —0218 8 _0611158 8
of the plant are assumed such that B= '0 015 03 0 (64)
ay{t) =—1+ Aagylt) — 0.5 < Aqy(t) <0.5 (57a) 0 0 0 03
b{t) =1+ Ab,(t) —0.5< Ab(t) <0.5 (57b) 0.2317 - 0.2004;3 0.888(1)(2) - odggtglz
—-_ |—0.00489  0.267 0. 0.00000
la(e) <4. (57¢) 7=\ 0.00000 0.00012 0.01325 —0.02647 (65)
The nominal matrices of (56) becomes —0.00012  0.00000 —0.00068 0.02647
Ay=0 Ay=5 Ay=[T171Y. (58) B
Then, from (36), (62), and (63), the coefficient

Ayp=0, and

To show the potential of the nonlinear dynamics of

By=1

the algorithm, as an example problem, the constraint
on the states T3 and z, are additionally imposed

as
|z,| <21 (59)
To effectively solve these constraints, the INOVSS

and |z, <11,

matrices of the nonlinear sliding surface can be
designed as

_ [10.09902 0.09902 _
C"‘[ 0.09902 0.09902°  C2= O (662)
_ [5.67102 0.19380 10
Cn= [0.19380 5.6102}’ Cn [0 1] (66b)
Cy= [0 050 0 ] (66c)

00 0 50
At the stage of the design of the INOVSS, the
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switching gains ¥y, ¥,, ¥,, 4, and K are selected
as in Table 1. For the three initial conditions,
X=1{40-20 0 0],

[30-15 0 0],
[20-10 0 o]

(67)

the simulations are carried out with 2 [msec]
sampling and under the condition of parameter
variations and external disturbance in (56) as

Ag;; and Ab; =05, |d(X.t)=6, (68)
The simulation results for the nonlinear optimal
VSS when M(+)=0 and M(+)=0 are
comparatively shown in Fig. 1 through Fig 5. Fig 1
the
sliding

ij=1.2.

shows each predicted state response of

integral-augmented linear and nonlinear
dynamics of (9), ie, solution of (14) with (16) for
the initial condition (67). As designed, the response
of 3 and x,; by the nonlinear optimal sliding
surface are limited by the constraints given in (59),

whereas the output response of x; and X, are

retarded compared with those when G( - )=0.
These
trajectories of T;vs X3 and Z,Us Xy in Fig. 2

features can be also found in phase

With the linear dynamics, it is difficult to consider
the the Under the
uncertainties and disturbance of (68), the real output

constraints  on states.
responses of (3) by the both schemes are given I
Fig. 3, which is almost equal to Fig. 1 as can be
Thus, the
performance is preserved by the INOVSS algorithm.
And the prediction/predetermination of the output is

feasible using Fig. 1. The corresponding phase

seen. designed nonlinear  optimal

trajectories of 2x,¥S 3 and X,vS Ty are

presented in Fig. 4. In these figures, the saturation
effect on the states x3 and ; can be seen as
predicted. In addition, there is no reaching phase,
but the the
conditions. no reaching phase
inputs of (46) with
Fig. 5

sliding mode occurs from initial

Hence there is
problems. The total control

discontinuity depicted in for

X = {40—20 0 ORIGHT]

From the above comparative simulation studies, the
the VSS s

are

potential  of nonlinear  optimal

appreciated.

IV. Conclusions

In this paper, an integral-augmented

nonlinear optimal variable structure
system is studied for the control of
uncertain MIMO plant subjected to

persistent disturbances by effectively
combing VSS theory and the nonlinear
optimal control algorithms. The integral

nonlinear sliding surface under

consideration can offer significant

advantages over the linear one in a

variety of circumstances such as state

constraint. With the proposed sliding
surface, there is no reaching phase
problems, Thus the complete

robustness for the whole trajectory is
obtained. The ideal sliding dynamics of
the nonlinear sliding surface is obtained
in nonlinear state equation form. Using
this the

nonlinear technique is

ideal sliding dynamics,
optimal
established for the stable design of the
nonlinear sliding surface by minimizing
the non—quadratic performance index.
The 2v (k)

defined in order to easily select the 2v

homogeneous form is
or even k-form higher order nonlinear
terms in the suggested sliding surface.
And using the diagonalization method,
the the
existence condition of the sliding mode

stabilizing Input satisfying
on the new transformed surface is also
the

performance

designed in order to guarantee

nonlinear optimal

pre-selected in the sliding dynamics.
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(c) X3 responses

Fig 1 Designed outputs by the linear and nonlinear
VSS's
for

0 o 02
l

(a) X3 vs. Xa

Fig 2 Designed phase trajectories by the linear and
nonlinear VSS's
for

MM A EtE =2 X(Joumal of IKEEE) Vol. 11. No.1

(d) X4 responses
X°= {40 —20 0 0], [30 —15 0 0],
linear optimal
nonlinear optimal

{20 —10 0 0]

..........
S

0c o

0 0
I T
~"\{~

i i i 1
-18 -12 -5 0O
(b)) Xavs. X2

[30 —15 0 0}, [20 —10 0 O}
linear optimal
nonlinear optimal

X=[40 —20 0 0},
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- - T i i L

Q 1 2 3 4 o] 1 2 3 4

Time [sec] Time [sec]
{(a) X1 responses {b) X2 responses

30 -~
X4 ;
i o i i i H f
o 1 2 3 4 o 1 2 3 4
Time [sec] Time [sec}
(c) X3 responses (d) Xs responses
XV=[40 =20 0 0], [30 ~150 0], [20 —10 0 0]
Fig 3 Real outputs by the linear and nonlinear ... linear optimal
vss's oo e nonlinear optimal
for
X4
s
aF
c -
H t i I
0 10 20 30 40 -18 -12 -6 0
Xi Xz
(8) X3 vs. X1 (b) Xsvs. X2
Fig 4 Real phase trajectories by the linear & X"=1[40 —200 0], [30 ~1500], [20 —10 0 0]
nonlinear VSS's linear optimal

for . .
—————— nonlinear optimal
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N
-
!
~800 4 A i ! ~BO0 E 1 : : '
G % 2 3 4 O 1 2 3 4
Time IE&C} Time {Seci
(i) U (i) U2

{a) by Hlinear optimal VSS

a00 — 800 —
400 |
O
~-400
b
|
“gaa . 4 i 3 | N 1
o ] 2 3 . 3 O ] 2 3 44
Time [sec] Time [sec]
@ U (i) U2
Fig. 5 Real inputs under X% = [40 —20 0 0]
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