• 제목/요약/키워드: Ultimate lateral load

검색결과 182건 처리시간 0.022초

경량형강 스터드 벽체의 휨강도에 관한 연구 (A Study on the Flexural Strength Capacity of Wall Stud Assembly)

  • 권영봉;정현석;김갑득
    • 한국강구조학회 논문집
    • /
    • 제15권2호
    • /
    • pp.109-116
    • /
    • 2003
  • 벽체용 박판냉간성형 Lip-C-형강의 구조적인 거동에 관한 연구의 일환으로 횡하중을 받는 스터드 벽체의 휨강도에 관한 실험적인 연구가 수행되었다. 시험체는 3개 또는 4개의 Lip-C-형강 스터드 부재의 양단을 C-형강 트랙으로 고정하여 제작되었다. 실험의 주요 변수는 스터드 복부의 천공 여부, 보강채널(bridge channel)의 간격 및 개수 그리고 보강 채널의 고정 및 스터드 플랜지의 간격 유지용 특수 클립(Clip)의 개수 등이며, 스터드의 인장측 플랜지에 부착된 합판과 석고보드의 벽에 강도에 미치는 영향이 연구되었다. 실험에 의한 휨강도는 AISI시방서(1996)에 근거한 강도와 비교하였다.

3차원 격자요소를 활용한 콘크리트 구조부재의 스트럿-타이 모델 설계 방법 - (II) 타당성 평가 (Strut-Tie Model Approach Associated with 3-Dimensional Grid Elements for Design of Structural Concrete - (II) Validity Evaluation)

  • 김병헌;윤영묵
    • 대한토목학회논문집
    • /
    • 제34권2호
    • /
    • pp.437-446
    • /
    • 2014
  • 현 논문에서는 전편 논문에서 제안한 3차원 격자요소를 활용하는 스트럿-타이 모델 방법의 타당성 및 효율성을 검증하기 위해 파괴실험이 수행된 13개의 슬래브-기둥 접합부 및 51개의 비틀림 보 등의 극한강도를 평가하였으며, 또한 3축 방향의 하중을 받는 교각코핑부에 대한 설계를 수행하였다. 현 연구의 방법에 의한 철근콘크리트 슬래브-기둥 접합부 및 비틀림 보의 극한강도 평가결과는 실험결과, ACI 318 설계기준을 비롯한 세계 주요설계기준, 그리고 몇몇 연구자의 방법에 의한 평가결과 등과 비교하여 현 연구방법의 타당성을 검증하였다. 교각코핑부의 설계결과는 ACI 318 설계기준의 단면법 및 AASHTO-LRFD의 스트럿-타이 모델 설계기준에 의한 설계결과와 비교하여 그 결과의 타당성을 검토하였다.

지중 매설 GFRP 관로 및 플랜지의 거동 분석 (Behavior Analysis of Buried GFRP Pipes and Flanges)

  • 한택희;김효산;장영두;박윤호;강영종
    • 복합신소재구조학회 논문집
    • /
    • 제1권1호
    • /
    • pp.27-33
    • /
    • 2010
  • Static analyses and buckling analyses were carried out for buried GFRP pipes by using finite element method. Vehicle loads, vertical and lateral soil pressures were considered as external loads, and supplying water pressure was considered as an internal load. Nine types of the factory-manufactured GFRP pipes were analyzed. Their maximum stresses and displacements were compared with the limit displacements and ultimate stress. Additionally, stress analysis on an enhanced flange, which was designed to reduce stress concentration, was performed. A cantilever analysis was carried out to know the maximum stress on the neck of the flange, which is the critical part. And a static analysis was carried for the buried flange. The test results showed that GFRP pipes were safe and stable against the external loads. And they showed that the enhanced flange decreased about 35% of the stress concentration.

  • PDF

단조하중을 받는 철골구조물의 접합부 연성도에 관한 연구 (A Study on Connection Ductility of Steel Structures Subjected to Monotonic Loading)

  • 강석봉;김진형
    • 한국강구조학회 논문집
    • /
    • 제12권4호통권47호
    • /
    • pp.375-385
    • /
    • 2000
  • 6층 비가새 및 20층 가새 철골구조물에서 기하 비선형, 재료 비선형, 접합부 비선형을 고려할 때 극한 횡하중에 대해 요구되는 접합부 연성도를 파악하였다. 재료 비선형을 고려하기 위하여 단면 모멘트-곡률 관계는 Fiber 모델을 이용하고 부재 강성행렬은 유연도 선형분포 해석모델을 이용하여 유도하였다. 강접합부를 반강접합부로 대체한 6층 구조물의 접합부 연성도는 강접합부인 경우 보다 적었고 20층 구조물에서 요구되는 반강접합부 연성도는 전단접합부의 경우와 거의 같고 강접합부는 전단접합부나 반강접합부에 비하여 큰 연성도가 필요하였다.

  • PDF

Experimental behavior and shear bearing capacity calculation of RC columns with a vertical splitting failure

  • Wang, Peng;Shi, Qing X.;Wang, Qiu W.;Tao, Yi
    • Earthquakes and Structures
    • /
    • 제9권6호
    • /
    • pp.1233-1250
    • /
    • 2015
  • The behavior of reinforced concrete (RC) columns made from high strength materials was investigated experimentally. Six high-strength concrete specimen columns (1:4 scale), which included three with high-strength transverse reinforcing bars and three with normal-strength transverse reinforcement, were tested under double curvature bending load. The effects of yielding strength and ratio of transverse reinforcement on the cracking patterns, hysteretic response, shear strength, ductility, strength reduction, energy dissipation and strain of reinforcement were studied. The test results indicated that all specimens failed in splitting failure, and specimens with high-strength transverse reinforcement exhibited better seismic performance than those with normal-strength transverse reinforcement. It also demonstrated that the strength of high-strength lateral reinforcing bars was fully utilized at the ultimate displacements. Shear strength formula of short concrete columns, which experienced a splitting failure, was proposed based on the Chinese concrete code. To enhance the applicability of the model, it was corroborated with 47 short concrete columns selected from the literature available. The results indicated that, the proposed method can give better predictions of shear strength for short columns that experienced a splitting failure than other shear strength models of ACI 318 and Chinese concrete codes.

P.C 대형판 부분구조의 비선형 거동에 관한 실험과 해석 비교연구 (Study on the Correlation between Analysis and Experiment for the Nonlinear Behavior of large Panel Precast Concrete Subassemblage)

  • 김성호;이한선;이병해
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1990년도 가을 학술발표회 논문집
    • /
    • pp.47-54
    • /
    • 1990
  • 접합부에서 급격한 불연속성을 가진 프리캐스트 콘크리트(P.C) 대형판 구조는 붕괴에 이르기까지의 구조적인 거동이 일체식 콘크리트 구조와 매우 상이하다. 또한 극심한 지진과 같은 횡하중이 작용할 경우 그 최대 붕괴하중과 붕괴청상을 파악하는 것은 매우 중요한 과제이다. 본 연구에서는 2층 실물크기 P.C 시험체에 대한 정적 실험결과를 토대로 비선형 해석 전산 프로그램인 ANSR를 사용하여 P.C 구조물의 비선형 거동을 예측하고 실험에서 관찰할 수 없는 최종 붕괴시까지의 내부 응력의 분포 및 변화를 연구하였다.

  • PDF

Seismic repair of captive-column damage with CFRPs in substandard RC frames

  • Tunaboyu, Onur;Avsar, Ozgur
    • Structural Engineering and Mechanics
    • /
    • 제61권1호
    • /
    • pp.1-13
    • /
    • 2017
  • The effectiveness of the repair scheme for the damaged captive-columns with CFRPs (Carbon Fiber Reinforced Polymer) was investigated in terms of response quantities such as strength, ductility, dissipated energy and stiffness degradation. Two 1/3 scale, one-story one-bay RC (Reinforced Concrete) frames were designed to represent the substandard RC buildings in Turkish building stock. The first one, which is the reference specimen, is the bare frame without infill wall. Partial infill wall with opening was constructed between the columns of the second frame and this caused captive column defect. Severe damage was observed with the concentration of shear cracks in the second specimen columns. Then, the damaged members were repaired by CFRP wrapping and retested. For the three test series, similar reversed cyclic lateral displacement under combined effect of axial load was applied to the top of the columns. Overall response of the bare frame was dominated by flexural cracks. Brittle type of shear failure in the column top ends was observed in the specimen with partial infill wall. It was observed that former capacity of damaged members of the second frame was recovered by the applied repair scheme. Moreover, ultimate displacement capacity of the damaged frame was improved considerably by CFRP wrapping.

Modeling of local buckling in tubular steel frames by using plastic hinges with damage

  • Inglessis, Pether;Medina, Samuel;Lopez, Alexis;Febres, Rafael;Florez-Lopez, Julio
    • Steel and Composite Structures
    • /
    • 제2권1호
    • /
    • pp.21-34
    • /
    • 2002
  • A model of the process of local buckling in tubular steel structural elements is presented. It is assumed that this degrading phenomenon can be lumped at plastic hinges. The model is therefore based on the concept of plastic hinge combined with the methods of continuum damage mechanics. The state of this new kind of inelastic hinge is characterized by two internal variables: the plastic rotation and the damage. The model is valid if only one local buckling appears in the plastic hinge region; for instance, in the case of framed structures subjected to monotonic loadings. Based on this damage model, a new finite element that can describe the development of local buckling is proposed. The element is the assemblage of an elastic beamcolumn and two inelastic hinges at its ends. The stiffness matrix, that depends on the level of damage, the yielding function and the damage evolution law of the two hinges define the new finite element. In order to verify model and finite element, several small-scale frames were tested in laboratory under monotonic loading. A lateral load at the top of the frame was applied in a stroke-controlled mode until local buckling appears and develops in several locations of the frame and its ultimate capacity was reached. These tests were simulated with the new finite element and comparison between model and test is presented and discussed.

Structural behavior of sandwich composite wall with truss connectors under compression

  • Qin, Ying;Chen, Xin;Zhu, Xingyu;Xi, Wang;Chen, Yuanze
    • Steel and Composite Structures
    • /
    • 제35권2호
    • /
    • pp.159-169
    • /
    • 2020
  • Sandwich composite wall consists of concrete core attached by two external steel faceplates. It combines the advantage of steel and concrete. The appropriate composite action between steel faceplate and concrete core is achieved by using adequate mechanical connectors. This research studied the compressive behavior of the sandwich composite walls using steel trusses to bond the steel faceplates to concrete infill. Four short specimens with different wall width and thickness of steel faceplate were designed and tested under axial compression. The test results were comprehensively evaluated in terms of failure modes, load versus axial and lateral deformation responses, resistance, stiffness, ductility, strength index, and strain distribution. The test results showed that all specimens exhibited high resistance and good ductility. Truss connectors offer better restraint to walls with thinner faceplates and smaller wall width. In addition, increasing faceplate thickness is more effective in improving the ultimate resistance and axial stiffness of the wall.

Shear strength evaluation of RC solid piers of high-speed railway bridges in China

  • Guo, Wei;Fan, Chao;Cui, Yao;Zeng, Chen;Jiang, Lizhong;Yu, Zhiwu
    • Structural Engineering and Mechanics
    • /
    • 제78권4호
    • /
    • pp.413-423
    • /
    • 2021
  • Piers are the main lateral force-resisting members of high-speed railway (HSR) bridges used in China and are characterized by low axial load ratios, low longitudinal reinforcement ratios, low stirrup ratios, and high shear span ratios. It is well known that flexural, flexural-shear, and shear failures of piers may occur during an earthquake. In this study, a new shear strength model was developed to simulate the seismic failure of HSR solid piers accurately. First, low cyclic-loading test data of solid piers obtained in recent years were collected to set up a database for model verification. Second, based on the test database, the applicability of existing shear strength models was evaluated. Finally, a new shear strength model for HSR solid piers with round-ended cross-sections was derived based on the truss model and ultimate equilibrium theory. In comparison with existing models, it was demonstrated that the proposed model could be used to predict the shear strength of HSR piers more accurately.