DOI QR코드

DOI QR Code

Structural behavior of sandwich composite wall with truss connectors under compression

  • Qin, Ying (Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, Southeast University) ;
  • Chen, Xin (School of Civil Engineering, Southeast University) ;
  • Zhu, Xingyu (School of Civil Engineering, Southeast University) ;
  • Xi, Wang (School of Civil Engineering, Southeast University) ;
  • Chen, Yuanze (School of Civil Engineering, Southeast University)
  • Received : 2019.11.23
  • Accepted : 2020.03.04
  • Published : 2020.04.25

Abstract

Sandwich composite wall consists of concrete core attached by two external steel faceplates. It combines the advantage of steel and concrete. The appropriate composite action between steel faceplate and concrete core is achieved by using adequate mechanical connectors. This research studied the compressive behavior of the sandwich composite walls using steel trusses to bond the steel faceplates to concrete infill. Four short specimens with different wall width and thickness of steel faceplate were designed and tested under axial compression. The test results were comprehensively evaluated in terms of failure modes, load versus axial and lateral deformation responses, resistance, stiffness, ductility, strength index, and strain distribution. The test results showed that all specimens exhibited high resistance and good ductility. Truss connectors offer better restraint to walls with thinner faceplates and smaller wall width. In addition, increasing faceplate thickness is more effective in improving the ultimate resistance and axial stiffness of the wall.

Keywords

Acknowledgement

Supported by : Natural Science Foundation of Jiangsu

This work is sponsored by the Natural Science Foundation of Jiangsu Province (Grant No. BK20170685), and the National Key Research and Development Program of China (Grant No. 2017YFC0703802). The authors would like to thank the Zhejiang Southeast Space Frame Group Company Limited for the supply of test specimens, and Xiongliang Zhou, Weigang Chen, Yunfei He and Jianwei Ni for their assistance with the specimen fabrication.

References

  1. AISC 360-16 (2016), Specification for structural steel buildings, American Institute of Steel Construction, Chicago, USA.
  2. Akiyama, H. and Sekimoto, H. (1991), "A compression and shear loading tests of concrete filled steel bearing wall", Transaction of 11th Structural Mechanics in Reactor Technology (SMiRT-11), Tokyo, Japan, August.
  3. Ayazi, A. and Shafaei, S. (2019), "Steel-concrete composite shear walls using precast high performance fiber reinforced concrete panels", Struct. Des. Tall Spec. Build., 28(10), e1617. https://doi.org/10.1002/tal.1617.
  4. Bafti, F.G., Mortezaei, A. and Kheyroddin, A. (2019), "The length of plastic hinge area in the flanged reinforced concrete shear walls subjected to earthquake ground motions", Struct. Eng. Mech., 69 (6), 651-665. https://dx.doi.org/10.12989/sem.2019.69.6.651.
  5. Beiraghi, H. (2019), "Seismic response of dual structures comprised by Buckling-Restrained Braces (BRB) and RC walls", Struct. Eng. Mech., 72 (4), 443-454. https://dx.doi.org/10.12989/sem.2019.72.4.443.
  6. Bruhl, J.C. and Varma, A.H. (2018), "experimental evaluation of steel-plate composite walls subject to blast loads", J. Struct. Eng., 144(9), 04018155. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002163.
  7. CECS 159 (2004), Technical specification for structures with concrete-filled rectangular steel tube members; China Association for Engineering Construction Standardization, Beijing, China.
  8. Chen, L., Mahmoud, H., Tong, S.M. and Zhou, Y. (2015), "Seismic behavior of double steel plate-HSC composite walls", Eng. Struct., 102, 1-12. http://dx.doi.org/10.1016/j.engstruct.2015.08.017.
  9. Chen, L, Wang, S., Lou, Y. and Xia, D. (2019), "Seismic behavior of double-skin composite wall with L-shaped and C-shaped connectors", J. Constr. Steel Res., 160, 255-270. https://doi.org/10.1016/j.jcsr.2019.05.033.
  10. Choi, B.J. and Han, H.S. (2009), "An experiment on compressive profile of the unstiffened steel plate-concrete structures under compression loading", Steel Compos. Struct., 9(6), 519-534. https://doi.org/10.12989/scs.2009.9.6.519.
  11. Choi, B.J., Kang, C.K. and Park, H.Y. (2014), "Strength and behavior of steel plate-concrete wall structures using ordinary and eco-oriented cement concrete under axial compression", Thin Wall Struct., 84, 313-324. http://dx.doi.org/10.1016/j.tws.2014.07.008.
  12. Curkovic, I., Skejic, D., Dzeba, I and De Matteis, G. (2019), "Seismic performance of composite plate shear walls with variable column flexural stiffness", Steel Compos. Struct., 33(1), 851-868. https://doi.org/10.12989/scs.2019.33.1.851.
  13. Deifalla, A.F., Fattouh, F.M., Fawzy, M.M. and Hussein, I.S. (2019), "Behavior of stiffened and unstiffened CFT under concentric loading, An experimental study", Steel Compos. Struct., 33(6), 793-803. https://doi.org/10.12989/scs.2019.33.793.
  14. EN 1994-1-1 (2004), Eurocode 4: Design of composite steel and concrete structures-Part 1-1: General rules and rules for buildings, European Standard Institute, Brusels, Belgium.
  15. Eom, T.S., Park, H.G., Lee, C.H., Kim, J.H. and Chang, I.H. (2009), "Behavior of double skin composite wall subjected to in-plane cyclic loading", J. Struct. Eng., 135(10), 1239-1249. http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0000057.
  16. GB50010-2010 (2015), Code for design of concrete structures; China Architecture & Building Press, Beijing, China.
  17. Guo, Q. and Zhao, W. (2019), "Design of steel-concrete composite walls subjected to low-velocity impact", J. Constr. Steel Res., 154, 190-196. https://doi.org/10.1016/j.jcsr.2018.12.001.
  18. Guo, L., Wang, Y. and Zhang, S. (2018), "Experimental study of rectangular multi-partition steel-concrete composite shear walls", Thin Wall Struct., 130, 577-592. https://doi.org/10.1016/j.tws.2018.06.011.
  19. Hossain, K.M.A. and Wright, H.D. (2004), "Behaviour of composite walls under monotonic and cyclic shear loading", Struct. Eng. Mech., 17(1), 69-85. http://dx.doi.org/10.12989/sem.2004.17.1.069.
  20. Hu, H.S., Nie, J.G. and Eatherton, M.R. (2014), "Deformation capacity of concrete-filled steel plate composite shear walls", J. Constr. Steel Res., 103, 148-158. http://dx.doi.org/10.1016/j.jcsr.2014.08.006.
  21. Huang, S.T., Huang, Y.S., He, A., Tang, X.L, Chen, Q.J., Liu, X. and Cai, J. (2018), "Experimental study on seismic behaviour of an innovative composite shear wall", J. Constr. Steel Res., 148, 165-179. https://doi.org/10.1016/j.jcsr.2018.05.003.
  22. Huang, Z.Y. and Liew, J.Y.R. (2016), "Structural behaviour of steel-concrete-steel sandwich composite wall subjected to compression and end moment", Thin Wall Struct., 98, 592-606. http://dx.doi.org/10.1016/j.tws.2015.10.013.
  23. Ji, X., Cheng, X., Jia, X. and Varma, A.H. (2017), "cyclic in-plane shear behavior of double-skin composite walls in high-rise buildings", J. Struct. Eng., 143(6), 04017025. http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0001749.
  24. Liu, Z.A., Liu, H.B., Chen, Z.H. and Zhang, G.P. (2018), "Structural behavior of cold-formed thick-walled rectangular steel columns", J. Constr. Steel Res., 147, 277-292. http://dx.doi.org/10.1016/j.jcsr.2018.03.013.
  25. Kanchi, M. (1996), "Experimental study on a concrete filled steel structure Part 2 Compressive tests (1). Summary of Technical Papers of Annual Meeting", Architectural Institute of Japan, 1996, 1071-1072.
  26. Mydin, M.A.O. and Wang, Y.C. (2011), "Structural performance of lightweight steel-foamed concrete-steel composite walling system under compression", Thin Wall Struct., 49, 66-76. http://dx.doi.org/10.1016/j.tws.2010.08.007.
  27. Nguyen, N.H. and Whittaker, A.S. (2017), "Numerical modelling of steel-plate concrete composite shear walls", Eng. Struct., 150, 1-11. http://dx.doi.org/10.1016/j.engstruct.2017.06.030.
  28. Nie, J.G., Ma, X.W., Tao, M.X., Fan, J.S. and Bu, F.M. (2014), "Effective stiffness of composite shear wall with double plates and filled concrete", J. Constr. Steel Res., 99, 140-148. http://dx.doi.org/10.1016/j.jcsr.2014.04.001.
  29. Prabha, P., Marimuthu, V., Saravanan, M., Palani, G.S., Lakshmanan, N. and Senthil, R. (2013), "Effect of confinement on steel-concrete composite light-weight load-bearing wall panels under compression", J. Constr. Steel Res., 81, 11-19. http://dx.doi.org/10.1016/j.jcsr.2012.10.008.
  30. Qin, Y., Shu, G.P., Fan, S.G., Lu, J.Y., Cao, S. and Han, J.H. (2017), "Strength of double skin steel-concrete composite walls", Int. J. Steel Struct., 17(2), 535-541. http://dx.doi.org/10.1007/s13296-017-6013-9.
  31. Qin, Y., Shu, G.P., Zhou, G.G. and Han, J.H. (2019a), "Compressive behavior of double skin composite wall with different plate thicknesses", J. Constr. Steel Res., 157, 297-313. https://doi.org/10.1016/j.jcsr.2019.02.023.
  32. Qin, Y., Shu, G.P., Zhou, G.G., Han, J.H. and Zhou, X.L. (2019b), "Truss spacing on innovative composite walls under compression", J. Constr. Steel Res., 160, 1-15. https://doi.org/10.1016/j.jcsr.2019.05.027.
  33. Qin, Y., Chen, X., Xi, W., Zhu, X.Y. and Chen, Y.Z. (2020), "Compressive behavior of rectangular sandwich composite wall with different truss spacings", Steel Compos. Struct., 34(6), 783-794. https://doi.org/10.12989/scs.2020.34.6.783.
  34. Rafiei, S., Hossain, K.M.A., Lachemi, M. and Behdinan, K. (2017), "Impact shear resistance of double skin profiled composite wall", Eng. Struct., 140, 267-285. http://dx.doi.org/10.1016/j.engstruct.2017.02.062.
  35. Song, Y., Uy, B. and Wang, J. (2019), "Numerical analysis of stainless steel-concrete composite beam-to-column joints with bolted flush endplates", Steel Compos. Struct., 33(1), 975-994. http://dx.doi.org/10.12989/scs.2019.33.1.975.
  36. Seo, J., Varma, A.H., Sener, K. and Ayhan, D. (2016), "Steel-plate composite (SC) walls: In-plane shear behavior, database, and design", J. Constr. Steel Res., 119, 202-215. http://dx.doi.org/10.1016/j.jcsr.2015.12.013.
  37. Usami, S., Akiyama, H., Narikawa, M., Hara, K., Takeuchi, M. and Sasaki, N. (1995), "Study on a concrete filled steel structure for nuclear plants (part 2). Compressive loading tests on wall members", Transaction of 13th Structural Mechanics in Reactor Technology (SMiRT-13), Porto Alegre, Brazil, August.
  38. Varshney, L.K., Patel, K.A., Chaudhary, S. and Nagpal, A.K. (2019), "An efficient and novel strategy for control of cracking, creep and shrinkage effects in steel-concrete composite beams", Struct. Eng. Mech., 70 (6), 751-763. https://dx.doi.org/10.12989/sem.2019.70.6.751.
  39. Wei, F., Zheng, Z., Yu, J. and Wang, Y. (2019), "Structure behavior of concrete filled double-steel-plate composite walls under fire", Adv. Struct. Eng., 22(8), 1895-1908. https://doi.org/10.1177/1369433218825238.
  40. Xiong, Q.Q., Chen, Z.H., Zhang, W., Du, Y.S., Zhou, T. and Kang, J.F. (2017), "Compressive behaviour and design of L-shaped columns fabricated using concrete-filled steel tubes", Eng. Struct., 152, 758-770. https://doi.org/10.1016/j.engstruct.2017.09.046.
  41. Yan, J.B., Wang, Z., Wang, T. and Wang, X.T. (2018), "Shear and tensile behaviors of headed stud connectors in double skin composite shear wall", Steel Compos. Struct., 26(6), 759-769. https://doi.org/10.12989/scs.2018.26.6.759.
  42. Yan, J.B., Chen, A.Z. and Wang, T. (2019), "Developments of double skin composite walls using novel enhanced C-channel connectors", Steel Compos. Struct., 33(6), 877-889. https://doi.org/10.12989/scs.2019.33.6.877.
  43. Yang, Y., Xue, Y.C., Zhang, T. and Tian, J. (2018), "Structural performance of GFRP-concrete composite beams", Struct. Eng. Mech., 68(4), 485-495. https://dx.doi.org/10.12989/sem.2018.68.4.485.
  44. Zhou, T., Ren, Z., Jiang, B., Xu, M., Lei, Z. and Chen, Z. (2019), "Calculating Method Study and Parameter Analysis of Slender LCFST Columns Under Axial Loading", Int. J. Steel Struct., 19(5), 1645-1661. http://dx.doi.org/10.1007/s13296-019-00234-2.
  45. Zhao, W., Guo, Q., Huang, Z., Tan, L., Chen, J. and Ye, Y. (2016), "Hysteretic model for steel-concrete composite shear walls subjected to in-plane cyclic loading", Eng. Struct., 106, 461-470. http://dx.doi.org/10.1016/j.engstruct.2015.10.031.

Cited by

  1. Behavior of L-shaped double-skin composite walls under compression and biaxial bending vol.37, pp.4, 2020, https://doi.org/10.12989/scs.2020.37.4.405