• Title/Summary/Keyword: U1

Search Result 15,311, Processing Time 0.035 seconds

ON SOLVABILITY OF THE DISSIPATIVE KIRCHHOFF EQUATION WITH NONLINEAR BOUNDARY DAMPING

  • Zhang, Zai-Yun;Huang, Jian-Hua
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.189-206
    • /
    • 2014
  • In this paper, we prove the global existence and uniqueness of the dissipative Kirchhoff equation $$u_{tt}-M({\parallel}{\nabla}u{\parallel}^2){\triangle}u+{\alpha}u_t+f(u)=0\;in\;{\Omega}{\times}[0,{\infty}),\\u(x,t)=0\;on\;{\Gamma}_1{\times}[0,{\infty}),\\{\frac{{\partial}u}{\partial{\nu}}}+g(u_t)=0\;on\;{\Gamma}_0{\times}[0,{\infty}),\\u(x,0)=u_0,u_t(x,0)=u_1\;in\;{\Omega}$$ with nonlinear boundary damping by Galerkin approximation benefited from the ideas of Zhang et al. [33]. Furthermore,we overcome some difficulties due to the presence of nonlinear terms $M({\parallel}{\nabla}u{\parallel}^2)$ and $g(u_t)$ by introducing a new variables and we can transform the boundary value problem into an equivalent one with zero initial data by argument of compacity and monotonicity.

Theoretical Study on the Nonadiabatic Transitions in the Photodissociation of Cl2, Br2, and I2

  • Asano, Yukako;Yabushita, Satoshi
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.703-711
    • /
    • 2003
  • We have theoretically studied the nonadiabatic transitions among the five lower states with the Ω=$1_u$ symmetry ($1_u^{(1)} to 1_u^{(5)}$) in the photodissociation of Cl₂, Br₂, and I₂by using the spin-orbit configuration interaction (SOCI) method and the semiclassical time-dependent coupled Schrodinger equations. From the configuration analyses of the SOCI wavefunctions, we found that the nonadiabatic transition between $1_u^{(2)}$ and $1_u^{(1)}$ is a noncrossing type, while that between $1_u^{(3)}$ and $1_u^{(4)}$ is a crossing type for all the molecules. The behavior of the radial derivative coupling element between $1_u^{(1)}$ and $1_u^{(2)}$ and that between $1_u^{(3)}$ and $1_u^{(4)}$ is analyzed in detail. In Cl₂, nonadiabatic transitions can take place even between the states correlating to different dissociation limits, while in Br₂ and I₂, with the usual photon energies e.g. less than 20 eV, nonadiabatic transitions occur only between the states correlating to the same dissociation limits, reflecting the different magnitudes of the spin-orbit interactions.

RESULTS ON THE ALGEBRAIC DIFFERENTIAL INDEPENDENCE OF THE RIEMANN ZETA FUNCTION AND THE EULER GAMMA FUNCTION

  • Xiao-Min Li;Yi-Xuan Li
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1651-1672
    • /
    • 2023
  • In 2010, Li-Ye [13, Theorem 0.1] proved that P(ζ(z), ζ'(z), . . . , ζ(m)(z), Γ(z), Γ'(z), Γ"(z)) ≢ 0 in ℂ, where m is a non-negative integer, and P(u0, u1, . . . , um, v0, v1, v2) is any non-trivial polynomial in its arguments with coefficients in the field ℂ. Later on, Li-Ye [15, Theorem 1] proved that P(z, Γ(z), Γ'(z), . . . , Γ(n)(z), ζ(z)) ≢ 0 in z ∈ ℂ for any non-trivial distinguished polynomial P(z, u0, u1, . . ., un, v) with coefficients in a set Lδ of the zero function and a class of nonzero functions f from ℂ to ℂ ∪ {∞} (cf. [15, Definition 1]). In this paper, we prove that P(z, ζ(z), ζ'(z), . . . , ζ(m)(z), Γ(z), Γ'(z), . . . , Γ(n)(z)) ≢ 0 in z ∈ ℂ, where m and n are two non-negative integers, and P(z, u0, u1, . . . , um, v0, v1, . . . , vn) is any non-trivial polynomial in the m + n + 2 variables u0, u1, . . . , um, v0, v1, . . . , vn with coefficients being meromorphic functions of order less than one, and the polynomial P(z, u0, u1, . . . , um, v0, v1, . . . , vn) is a distinguished polynomial in the n + 1 variables v0, v1, . . . , vn. The question studied in this paper is concerning the conjecture of Markus from [16]. The main results obtained in this paper also extend the corresponding results from Li-Ye [12] and improve the corresponding results from Chen-Wang [5] and Wang-Li-Liu-Li [23], respectively.

ON A CHARACTERIZATION OF THE EXPONENTIAL DISTRIBUTION BY CONDITIONAL EXPECTATIONS OF RECORD VALUES

  • Lee, Min-Young
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.2
    • /
    • pp.287-290
    • /
    • 2001
  • Let X$_1$, X$_2$, … be a sequence of independent and identically distributed random variables with continuous cumulative distribution function F(x). X(sub)j is an upper record value of this sequence if X(sub)j > max {X$_1$, X$_2$, …, X(sub)j-1}. We define u(n) = min {j│j > u(n-1), X(sub)j > X(sub)u(n-1), n $\geq$ 2} with u(1) = 1. Then F(x) = 1 - e(sup)-x/c, x > 0 if and only if E[X(sub)n(n+1) - X(sub)u(n)│X(sub)u(m) = y] = c or E[X(sub)u(n+2) - X(sub)u(n)│X(sub)u(m) = y] = 2c, n $\geq$ m+1.

  • PDF

ON ℤpp[u]/k>-CYCLIC CODES AND THEIR WEIGHT ENUMERATORS

  • Bhaintwal, Maheshanand;Biswas, Soumak
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.571-595
    • /
    • 2021
  • In this paper we study the algebraic structure of ℤpp[u]/k>-cyclic codes, where uk = 0 and p is a prime. A ℤpp[u]/k>-linear code of length (r + s) is an Rk-submodule of ℤrp × Rsk with respect to a suitable scalar multiplication, where Rk = ℤp[u]/k>. Such a code can also be viewed as an Rk-submodule of ℤp[x]/r - 1> × Rk[x]/s - 1>. A new Gray map has been defined on ℤp[u]/k>. We have considered two cases for studying the algebraic structure of ℤpp[u]/k>-cyclic codes, and determined the generator polynomials and minimal spanning sets of these codes in both the cases. In the first case, we have considered (r, p) = 1 and (s, p) ≠ 1, and in the second case we consider (r, p) = 1 and (s, p) = 1. We have established the MacWilliams identity for complete weight enumerators of ℤpp[u]/k>-linear codes. Examples have been given to construct ℤpp[u]/k>-cyclic codes, through which we get codes over ℤp using the Gray map. Some optimal p-ary codes have been obtained in this way. An example has also been given to illustrate the use of MacWilliams identity.

Positive Solutions of Nonlinear Neumann Boundary Value Problems with Sign-Changing Green's Function

  • Elsanosi, Mohammed Elnagi M.
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.1
    • /
    • pp.65-71
    • /
    • 2019
  • This paper is concerned with the existence of positive solutions of the nonlinear Neumann boundary value problems $$\{u^{{\prime}{\prime}}+a(t)u={\lambda}b(t)f(u),\;t{\in}(0,1),\\u^{\prime}(0)=u^{\prime}(1)=0$$, where $a,b{\in}C[0,1]$ with $a(t)>0,\;b(t){\geq}0$ and the Green's function of the linear problem $$\{u^{{\prime}{\prime}}+a(t)u=0,\;t{\in}(0,1),\\u^{\prime}(0)=u^{\prime}(1)=0$$ may change its sign on $[0,1]{\times}[0,1]$. Our analysis relies on the Leray-Schauder fixed point theorem.

AN INTERPOLATING HARNACK INEQUALITY FOR NONLINEAR HEAT EQUATION ON A SURFACE

  • Guo, Hongxin;Zhu, Chengzhe
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.909-914
    • /
    • 2021
  • In this short note we prove new differential Harnack inequalities interpolating those for the static surface and for the Ricci flow. In particular, for 0 ≤ 𝜀 ≤ 1, α ≥ 0, 𝛽 ≥ 0, 𝛾 ≤ 1 and u being a positive solution to $${\frac{{\partial}u}{{\partial}t}}={\Delta}u-{\alpha}u\;{\log}\;u+{\varepsilon}Ru+{\beta}u^{\gamma}$$ on closed surfaces under the flow ${\frac{\partial}{{\partial}t}}g_{ij}=-{\varepsilon}Rg_{ij}$ with R > 0, we prove that $${\frac{\partial}{{\partial}t}}{\log}\;u-{\mid}{\nabla}\;{\log}\;u{\mid}^2+{\alpha}\;{\log}\;u-{\beta}u^{{\gamma}-1}+\frac{1}{t}={\Delta}\;{\log}\;u+{\varepsilon}R+{\frac{1}{t}{}\geq}0$$.

The intermediate solution of quasilinear elliptic boundary value problems

  • Ko, Bong-Soo
    • Journal of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.401-416
    • /
    • 1994
  • We study the existence of an intermediate solution of nonlinear elliptic boundary value problems (BVP) of the form $$ (BVP) {\Delta u = f(x,u,\Delta u), in \Omega {Bu(x) = \phi(x), on \partial\Omega, $$ where $\Omega$ is a smooth bounded domain in $R^n, n \geq 1, and \partial\Omega \in C^{2,\alpha}, (0 < \alpha < 1), \Delta$ is the Laplacian operator, $\nabla u = (D_1u, D_2u, \cdots, D_nu)$ denotes the gradient of u and $$ Bu(x) = p(x)u(x) + q(x)\frac{d\nu}{du} (x), $$ where $\frac{d\nu}{du} denotes the outward normal derivative of u on $\partial\Omega$.

  • PDF

GENERALIZED Δ-COHERENT PAIRS

  • Kwon, K.H.;Lee, J.H.;F. Marcellan
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.6
    • /
    • pp.977-994
    • /
    • 2004
  • A pair of quasi-definite linear functionals {u$_{0}$, u$_1$} is a generalized $\Delta$-coherent pair if monic orthogonal polynomials (equation omitted) relative to u$_{0}$ and u$_1$, respectively, satisfy a relation (equation omitted) where $\sigma$$_{n}$ and T$_{n}$ are arbitrary constants and $\Delta$p = p($\chi$+1) - p($\chi$) is the difference operator. We show that if {u$_{0}$, u$_1$} is a generalized $\Delta$-coherent pair, then u$_{0}$ and u$_{1}$ must be discrete-semiclassical linear functionals. We also find conditions under which either u$_{0}$ or u$_1$ is discrete-classical.ete-classical.

ON CHARACTERIZATIONS OF THE WEIBULL DISTRIBUTION BY THE UPPER RECORD VALUES

  • Chang, Se-Kyung;Lee, Min-Young;Park, Young-Seo
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.437-443
    • /
    • 2008
  • In this paper, we establish detailed characterizations of the Weibull distribution by the independence of the upper record values. We prove that X $\in$ W EI($\alpha$), if and only if $\frac{X_{U(n)}}{X_{U(n+1)}+X_{U(n)}}$ and $X_{U(n+1)}$ are independent for n $\geq$ 1. And we show that X $\in$ W EI($\alpha$), if and only if $\frac{X_{U(n+1)}-X_{U(n)}}{X_{U(n+1)}+X_{U(n)}}$ and $X_{U(n+1)}$ are independent for n $\geq$ 1.

  • PDF