Acknowledgement
The authors are thankful to the anonymous referee for his/her careful reading of the manuscript and helpful suggestions that greatly improved the final presentation of the manuscript. The second author would like to thank Ministry of Human Resource Development (MHRD), India, for providing financial support.
References
- I. Aydogdu, T. Abualrub, and I. Siap, On ℤ2ℤ2[u]-additive codes, Int. J. Comput. Math. 92 (2015), no. 9, 1806-1814. https://doi.org/10.1080/00207160.2013.859854
- I. Aydogdu and I. Siap, The structure of ℤ2ℤ2s-additive codes: bounds on the minimum distance, Appl. Math. Inf. Sci. 7 (2013), no. 6, 2271-2278. https://doi.org/10.12785/amis/070617
- I. Aydogdu and I. Siap, On ℤprℤps-additive codes, Linear Multilinear Algebra 63 (2015), no. 10, 2089-2102. https://doi.org/10.1080/03081087.2014.952728
- I. Aydogdu, I. Siap, and R. Ten-Valls, On the structure of ℤ2ℤ2[u3]-linear and cyclic codes, Finite Fields Appl. 48 (2017), 241-260. https://doi.org/10.1016/j.ffa.2017.03.001
- J. Borges, C. Fernandez-Cordoba, and R. Ten-Valls, ℤ2ℤ4-additive cyclic codes, generator polynomials, and dual codes, IEEE Trans. Inform. Theory 62 (2016), no. 11, 6348-6354. https://doi.org/10.1109/TIT.2016.2611528
- J. Borges, C. Fernandez-Cordoba, and R. Ten-Valls, ℤ2-double cyclic codes, Des. Codes Cryptogr. 86 (2018), no. 3, 463-479. https://doi.org/10.1007/s10623-017-0334-8
- L. Diao and J. Gao, ℤpℤp[u]-additive cyclic codes, Int. J. Inf. Coding Theory 5 (2018), no. 1, 1-17. https://doi.org/10.1504/IJICOT.2018.091815
- A. R. Hammons, Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, and P. Sole, The ℤ4-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform. Theory 40 (1994), no. 2, 301-319. https://doi.org/10.1109/18.312154
- L. Qian and X. Cao, Bounds and optimal q-ary codes derived from the ℤqR-cyclic codes, IEEE Trans. Inform. Theory 66 (2020), no. 2, 923-935. https://doi.org/10.1109/TIT.2019.2927034
- J. Rifa and L. Ronquillo, Product perfect ℤ2ℤ4-linear codes in stegonography, International Symposium on Information Theory and Its Applications (2010), 696-701.
- M. Shi, R. Wu, and D. S. Krotov, On ℤpℤpk-additive codes and their duality, IEEE Trans. Inform. Theory 65 (2019), no. 6, 3841-3847. https://doi.org/10.1109/TIT.2018.2883759
- A. K. Singh and P. K. Kewat, On cyclic codes over the ring ℤp[u]/k>, Des. Codes Cryptogr. 74 (2015), no. 1, 1-13. https://doi.org/10.1007/s10623-013-9843-2