• Title/Summary/Keyword: Tubular shaft

Search Result 21, Processing Time 0.022 seconds

A Study on the Rotary Swaging Machine and Process Development of Automotive Tubular Drive Shaft (자동차용 중공 구동축 성형장치 개발 및 성형공정에 관한 연구)

  • 오태원;유택인;현동훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.344-350
    • /
    • 2003
  • This Paper deals with the weight-lowering and the traits of NVH(Noise, Vibration and Harshness) by the development of tubular shaft replacing the existing solid Drive Shaft for the lighter and less-noisy automobiles. By the review of Swaging Process this study reveals the various forming traits of Swaging, one of the forming methods for tubular shafts. Furthermore, it showed the possibility of Drive Shaft manufacturing through designing & manufacturing of Swaging machine for tubular shaft, and the production ar analysis of the tubular shaft with the relevant process and tools. This study also shows that the forming by swaging not only makes the mass production of tubular Drive Shaft possible but also may be widely applied to other products with many advantages in review of dimensional precision, thickness change, hardness increase and surface roughness of the swaged products.

  • PDF

Investigation of Structural Safety of Monobloc Tubular Drive Shaft Subjected to Torque (비틀림 모멘트가 부가되는 일체형 중공 드라이브 샤프트의 구조 안정성 분석)

  • Guk, Dae-Sun;Ahn, Dong-Gyu;Lee, Ho-Jin;Jung, Jong-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.12
    • /
    • pp.1073-1080
    • /
    • 2015
  • A drive shaft is used to transmit torque and rotation through the connection of components of a drive train. Recently, a monobloc drive shaft without welding regions is developed to improve the safety of the drive shaft. The drive shaft bears the shear stress induced by torque. The objective of this paper is to investigate into the structural safety of a monobloc tubular drive shaft subjected to torque. Elasto-plastic finite element (FE) analysis is performed to estimate the deformation behavior of the drive shaft and stress-strain distribution in the drive shaft. Several techniques are used to create finite element (FE) model of the monobloc tubular drive shaft subjected to torque. Through the comparison of the results of FE analyses with those of experiments from the viewpoint of rotational angle, appropriate correction coefficients for different load conditions are estimated. The safety of the tubular drive shaft is examined using the results of FE analyses for different load conditions. Finally, it is noted that the designed tubular drive shaft has a sufficient structural safety.

A study on the Design on the Tubular Drive Shaft (중공 드라이브 샤프트의 설계에 관한 연구)

  • Kim, Woo-Kang;Go, Jun-Bin;Kim, Hong-Bae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.3
    • /
    • pp.7-12
    • /
    • 2009
  • This study aims to find the friction welding and induction harden conditions, which are obtained by welding conditions, and the friction welding characteristics and induction harden conditions of tubular shaft were investigated with respect to low load test, high load test. Friction welding and induction harden machine have been widely used in manufacturing reflects of metal. The material of solid and tubular shaft selected that is used for parts of automobile steel. Such as steel are easy to be machined because of their proper material. As a result I obtained the data of friction welding conditions makes good and the condition of friction and get the tubular condition. The purpose of this study is to find fatigue test condition and induction harden characteristics design for tubular shaft.

  • PDF

The Effect of Torque Variation on the Stress Distribution Characteristics in A-IMS Module with both Side Tubular Shaft Yoke (양형 튜블러 샤프트 요크 적용 가변 슬라이딩 중간축 모듈의 토크 변경에 따른 응력 분포 특성)

  • Yeom, Jin Seop;Suh, Hyun Kyu
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.901-905
    • /
    • 2018
  • The objective of this study is to investigate the effect of torque variation on stress distributions in A-IMS module with both side tubular shaft yoke by numerically. In order to achieve this, the torque value was increased from 10Nm to 40Nm, and the results of this work were confirmed in terms of Von-mises Stress and the displacement characteristics. As the torque in module assembly was increased, the stress in tubular shaft york and splined shaft york was increased linearly. The indentation due to the steel ball was occurred in over $40N{\cdot}m$ torque which is over the yield strength condition. The largest displacement occurred in the tubular shaft yoke 1, however, it does not exceed the yield strength and is supposed to be restored due to the elasticity. Therefore, it was concluded that there is no problem for the manufacturing of A-IMS with both side tubular shaft yoke.

Development of Tubular Shaft for Reduction of Booming Noise in Vehicle Interior (차량 부밍 소음 저감을 위한 중공축 개발)

  • 고강호;국형석;이재형
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.203-208
    • /
    • 2002
  • In order to reduce the booming noise caused by first bending mode of a drive shaft, this paper proposes a simulation program for prediction of the bending mode frequency of any tubular shaft. This program consists of a pre-processor for modeling of geometrical shape of the drive shaft with boundary conditions of various joints, a processor for constructing of global finite element matrices using beam elements and an eigen-solver based on MATLAB program. Using this simulation program, the effective and accurate FE model far a shaft attached to vehicle can be obtained by aid of database for stiffness of each joint. Thus the resonance frequencies and mode shapes of a shaft can be calculated accurately. Because the effect of the resonance on interior noise can be verified, more improved shaft will be proposed at the early stage of design.

Estimation of Conditions of Incremental Hot Rotary Forging Process for Monobloc Tubular Drive Shaft (일체형 중공 드라이브 샤프트 제작을 위한 점진적 열간 로터리 단조 공정 조건 예측)

  • Lee, Ho-Jin;Guk, Dae-Sun;Ahn, Dong-Gyu;Jung, Jong-Hoon;Seol, Sang-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.4
    • /
    • pp.287-293
    • /
    • 2016
  • A monobloc tubular drive shaft is designed to obtain the improved structural safety and the weight reduction of the drive shaft together. The monobloc tubular drive shaft can be manufactured from an incremental hot rotary forging process. The aim of this study was to experimentally determine conditions of an incremental hot rotary forging process for a monobloc tubular drive shaft. Induction heating experiments were performed to estimate a proper heating time of an initial workpiece in an induction heating process. Several incremental hot rotary forging experiments were carried out using a mechanical press with the designed set-up. The step distance and the step angle were chosen as controllable forming parameters. Based on the results of the experiments, the influence of forming parameters on the quality of the forged part was investigated. Finally, a forming map and a proper forming condition of the incremental hot rotary forging process were estimated.

Improvement of Tubular Shaft Yoke Spline Machining in Both Side IMS Module (양형 IMS 모듈 튜블러 샤프트의 스플라인 가공 개선)

  • Min, Se Hun;Suh, Hyun Kyu
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.924-928
    • /
    • 2018
  • The objective of this study is to solve a problem that is occurred during the spline machining of tubular shaft yoke in both side IMS module. In order to simulate the problem, the movement direction of upper die was set as standard case and error case. The material of tubular shaft yoke was set to S20C as refer to the analysis library. The movement directions of upper die were separated with standard case and error case. The error case was set to simulate the problem in the spline machining of tubular shaft yoke. In order to solve the problem, the outer radius of upper die were modelled from 9.40mm to 9.44mm. The simulation results were analyzed and compared in terms of effective stress, metal flow line and folding phenomena characteristics. In case of the outer radius of upper die was 9.42mm, it was observed a relatively uniform effective stress distribution and had a straight metal flow line.

Development Technique of Tubular Shaft for Reduction of Booming Noise in Vehicle Interior Caused by Drive Shaft (구동축과 연관된 차량의 부밍 소음 저감을 위한 중공축 개발 기법)

  • Ko, Kang-Ho;Choi, Hyun-Joon;Kim, Young-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.187-193
    • /
    • 2000
  • In order to reduce the booming noise caused by first bending mode of drive shaft, this paper proposes a simulation program for prediction of the bending mode frequency of any tubular shaft. This program consists of a pre-processor for modeling of geometrical shape of drive shaft and applying the boundary conditions of various joints, a processor for constructing of global finite element matrices using beam elements and an eigen-solver based on MATLAB program. Using this simulation program, the effective and accurate FE model for a shaft attached in vehicle can be obtained by aid of database for stiffness of each joint. Thus the resonance frequencies and mode shapes of a shaft can be calculated accurately. Because the effect of the resonance on interior noise can be verified, more improved shaft can be proposed at the early stage of design.

  • PDF

Design of mandrel in tube drawing process for automotive steering input shaft (자동차용 SIS 인발 공정에서의 맨드렐 형상 설계)

  • Kim S. W.;Lee Y. S.;Kwon Y. N.;Lee J. W.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.198-201
    • /
    • 2005
  • Monobloc technology Provides a homogeneous material along the complete tubular shaft without any discontinuity between the interconnecting tube and the stems as is found when the tubes and stems have been Joined by welding. Cold tube drawing is a technique that can be applied for manufacturing of those monobloc tubular shafts with several advantages such as high productivity and cost reduction. The present study is concerned with the investigation about the process parameters related with tool configuration. In order to obtain successfully formed SIS(Steering Input Shaft) without any defects, advanced design of mandrel is presented and analyzed by the FEM and ductile fracture criterion in this paper.

  • PDF

Numerical Simulation of Induction Hardening Process of Tubular Drive Shaft for Automobile (자동차용 중공 구동축의 고주파 경화 공정에 대한 수치적 연구)

  • Kang, G.P.;Oh, B.K.;Kim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.25 no.4
    • /
    • pp.248-253
    • /
    • 2016
  • Induction hardening process of tubular drive shaft for automobile is simulated by combining the thermal, mechanical, electro-magnetic and metallurgical analysis models. Various material properties for each analysis model are obtained in a consistent way via material properties calculation software, JMatPro®. To consider the scanning process of induction heating, boundary element method is adopted for electro-magnetic field calculation. The distribution of temperature, stress and phase volume fraction are tracked out through the whole process and the effect of scanning velocity is reviewed. The analysis result shows that the critical principal stress is developed at the phase boundary where martensite is formed.