• Title/Summary/Keyword: Triangular Method

Search Result 783, Processing Time 0.024 seconds

A Study on Mesh Refinement for 3-D Adaptive Finite Element Method Using Tetrahedral Element (3차원 적응 유한요소법을 위한 사면체 요소세분에 관한 연구)

  • 김형석;정현교;한송엽
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.9
    • /
    • pp.921-927
    • /
    • 1990
  • This paper presents a mesh refinement scheme for 3-D adaptive finite element method. Firstly, the refinement of triangular meshes based on the bisection of triangles is discussed. And a new method to refine tetrahedral meshes employing the bisection method is presented. In two dimensional cases, it has been noted that all angles in the triangular meshes refined by the bisection method are greater than or equal to half the smallest angle in the original meshes. Through the examples where the newly proposed method is applied to three dimensional cases, it is shown that regarding the solid angles, the method gives nearly the same result as that in the two dimensional case. Accordingly, it can be concluded that the proposed method will be useful in the mesh refinements for 3-D adaptive finite element method.

  • PDF

Finite Element Analysis of Collapse of a Water Dam Using Filling Pattern Technique and Adaptive Grid Refinement of Triangular Elements (삼각형 요소의 형상 충전 및 격자 세분화를 이용한 붕괴하는 물 댐의 유한 요소 해석)

  • Kim, Ki-Don;Yang, Dong-Yol;Jeong, Jun-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.395-405
    • /
    • 2004
  • The filling pattern and an adaptive grid refinement based on the finite element method and Eulerian mesh advancement approach have been developed to analyze incompressible transient viscous flow with free surfaces. The governing equation for flow analysis is Navier-Stokes equation including inertia and gravity effects. The mixed FE formulation and predictor-corrector method are used effectively for unsteady numerical simulation. The flow front surface and the volume inflow rate are calculated using the filling pattern technique to select an adequate pattern among four filling patterns at each triangular control volume. By adaptive grid refinement, the new flow field that renders better prediction in flow surface shape is generated and the velocity field at the flow front part is calculated more exactly. In this domain the elements in the surface region are made finer than those in the remaining regions for more efficient computation. Using the proposed numerical technique, the collapse of a water dam has been analyzed to predict flow phenomenon of fluid and the predicted front positions with respect to time have been compared with the reported experimental results.

Determination of optimal parameters for perforated plates with quasi-triangular cutout by PSO

  • Jafari, Mohammad;Hoseyni, Seyed A. Mahmodzade;Chaleshtari, Mohammad H. Bayati
    • Structural Engineering and Mechanics
    • /
    • v.60 no.5
    • /
    • pp.795-807
    • /
    • 2016
  • This study tries to examine the effect of different parameters on stress analysis of infinite plates with central quasi-triangular cutout using particle swarm optimization (PSO) algorithm and also an attempt has been made to introduce general optimum parameters in order to achieve the minimum amount of stress concentration around this type of cutout on isotropic and orthotropic plates. Basis of the presented method is expansion of analytical method conducted by Lekhnitskii for circular and elliptical cutouts. Design variables in this study include fiber angle, load angle, curvature radius of the corner of the cutout, rotation angle of the cutout and at last material of the plate. Also, diagrams of convergence and duration time of the desired problem are compared with Simulated Annealing algorithm. Conducted comparison is indicative of appropriateness of this method in optimization of the plates. Finite element numerical solution is employed to examine the results of present analytical solution. Overlap of the results of the two methods confirms the validity of the presented solution. Results show that by selecting the aforementioned parameters properly, less amounts of stress can be achieved around the cutout leading to an increase in load-bearing capacity of the structure.

Testing Structural Changes in Triangular Data (삼각분할표에서 구조적 변화점 유무에 관한 검정)

  • Lee, Sung-Im
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.4
    • /
    • pp.551-562
    • /
    • 2008
  • The loss reserve is defined as a provision for an insurer's liability for claims or an insurer's estimate of the amount an individual claim will ultimately cost. For the estimation of the loss reserve, the data which make up the claims in general is represented as run-off triangle. The chain ladder method has known as the most representative one in the estimation of loss reserves based on such run-off triangular data. However, this fails to capture change point in trend. In order to test of structural changes of development factors, we will present the test statistics and procedures. A real data analysis will also be provided.

Improved TI-FCM Clustering Algorithm in Big Data (빅데이터에서 개선된 TI-FCM 클러스터링 알고리즘)

  • Lee, Kwang-Kyug
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.419-424
    • /
    • 2019
  • The FCM algorithm finds the optimal solution through iterative optimization technique. In particular, there is a difference in execution time depending on the initial center of clustering, the location of noise, the location and number of crowded densities. However, this method gradually updates the center point, and the center of the initial cluster is shifted to one side. In this paper, we propose a TI-FCM(Triangular Inequality-Fuzzy C-Means) clustering algorithm that determines the cluster center density by maximizing the distance between clusters using triangular inequality. The proposed method is an effective method to converge to real clusters compared to FCM even in large data sets. Experiments show that execution time is reduced compared to existing FCM.

Clinical Experiences about Correction of Web Space Contracture and Syndactyly using V-M Plasty (V-M 성형술을 이용한 지간구축 및 합지증의 교정 임상례)

  • Kim, Eui-Sik;Park, Sang-Ryul;Hwang, Jae-Ha;Kim, Kwang-Seog;Lee, Sam-Yong
    • Archives of Plastic Surgery
    • /
    • v.37 no.1
    • /
    • pp.46-51
    • /
    • 2010
  • Purpose: The loss of web space is caused by congenital syndactyly or acquired burn injury, trauma or surgery. Numerous surgical procedures have been described for restoration of the web space. Local flaps are usually preferred because of the easiness to perform and tolerable postoperative outcome. Among the various local flaps, the authors introduce V-M plasty for correction of web space contracture and syndactyly. Method: From March 2007 to Jun 2008, 4 patients underwent V-M plasty for correction of web space contracture and syndactyly. V-M plasty consists of 3 distinct triangular flaps. One triangular flap is designed next to the web region on the dorsal site of the hand, whereas the remaining 2 triangular flaps are placed on the volar site. The dorsal triangular flap is then placed between the volar adjacent triangular flaps. At the end of the operation, the involved fingers or toes are positioned in abduction to avoid kinking of the triangular flaps. Result: All the patients gained web functions with good esthetic appearance without any recurrence or complications. Mean follow-up was 8 months. Conclusion: V-M plasty is a safe, easy and rapid procedure to design and apply by using local tissues without the needs for a skin graft or risk of linear scarring and recurrence. The authors advise this versatile technique both in primary and recurrent cases of web space contracture and syndactyly.

A Dual Triangular Pyramidal Indentation Technique Based on FEA Solutions for Material Property Evaluation (유한요소해에 기초한 이중 삼각뿔 압입 물성평가법)

  • Kim, Min-Soo;Hyun, Hong-Chul;Lee, Jin-Haeng;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.1
    • /
    • pp.17-28
    • /
    • 2012
  • In this study, we suggest a method for material property evaluation by dual-triangular pyramidal indenters using the reverse analysis. First, we demonstrated that load-displacement curves of conical and triangular pyramidal indenters are different for the same material. For this reason, an independent research on the triangular pyramidal indenter is needed. From FE indentation analyses on various materials, we then investigated the relationships among material properties, indentation parameters and load-displacement curves. From this, we established property evaluation formula using dual-triangular pyramidal indenters having two different half-included-angles. The approach provides the values of elastic modulus, yield strength and strain-hardening exponent within an average error of 3% for various materials.

Effect of Ramping Rate on the Durability of Proton Exchange Membrane Water Electrolysis During Dynamic Operation Using Triangular Voltage Cycling

  • Hye Young Jung;Yong Seok Jun;Kwan-Young Lee;Hyun S. Park;Sung Ki Cho;Jong Hyun Jang
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.253-260
    • /
    • 2024
  • Proton exchange membrane water electrolysis (PEMWE) is an efficient method for utilizing renewable energy sources such as wind and solar powers to produce green hydrogen. For PEMWE powered by renewable energy sources, its durability is a crucial factor in its performance since irregular and fluctuating characteristics of renewable energy sources, especially for wind power, can deteriorate the stability of PEMWE. Triangular voltage cycle is well able to simulate fluctuating wind power, but its effect on the durability has not been investigated extensively. In this study, the performance degradation of the PEMWE cell operated with the triangular voltage cycling was investigated at different ramping rates. The measured current responses during the cycling gradually decreased for both ramping rates, and I-V curve measurements before and after the cycling confirmed the degradation of the performances of PEMWE. For both measurements, the degradation rate was larger for 300 mV s-1 than 30 mV s-1, and they were determined as 0.36 and 1.26 mV h-1 (at the current density of 2 A cm-2) at the ramping rates of 30 and 300 mV s-1, respectively. The comparison with other studies on triangular voltage cycling also indicate that an increase in the ramping rate accelerates the deterioration of the PEMWE performance. X-ray photoelectron spectroscopy and transmission electron microscopy results showed that the Ir catalyst was oxidized and did not dissolve during the voltage cycling. This study suggests that the ramping rate of the triangular voltage cycling is an important factor for the evaluation of the durability of PEMWE cells.

A Global Optimization Algorithm Based on the Extended Domain Elimination Method (영역 제거법의 확장을 통한 전체 최적화 알고리듬 개선)

  • O, Seung-Hwan;Lee, Byeong-Chae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.240-249
    • /
    • 2000
  • An improved global optimization algorithm is developed by extending the domain elimination method. The concept of triangular patch consists of two or more trajectories of local minimizations is introduced to widen the attraction region of the domain elimination method. Using the an-]c between each of three vertices of the patch and a design point, we measure the proximity, between the design point and the patch. With the Gram-Schimidt orthonormalization, this method can be extended to general n-dimensional problems. We code the original domain elimination algorithm and a patch-based algorithm. Then we compare the performance of two algorithms. Through the well-known example problems. the algorithm using patch is shown to be superior to the original domain elimination algorithm in view of computational efficiency.

Generating FE Mesh Automatically from STL File Model (STL 파일 모델로부터 유한 요소망 자동 생성)

  • Park, Jung-Min;Kwon, Ki-Youn;Lee, Byung-Chai;Chae, Soo-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.7 s.262
    • /
    • pp.739-746
    • /
    • 2007
  • Recently, models in STL files are widely used in reverse engineering processes, CAD systems and analysis systems. However the models have poor geometric quality and include only triangles, so the models are not suitable for the finite element analysis. This paper presents a general method that generates finite element mesh from STL file models. Given triangular meshes, the method estimates triangles and makes clusters which consist of triangles. The clusters are merged by some geometric indices. After merging clusters, the method applies plane meshing algorithm, based on domain decomposition method, to each cluster and then the result plane mesh is projected into the original triangular set. Because the algorithm uses general methods to generate plane mesh, we can obtain both tri and quad meshes unlike previous researches. Some mechanical part models are used to show the validity of the proposed method.