• Title/Summary/Keyword: Trench collector

Search Result 6, Processing Time 0.013 seconds

A Study on the Novel TIGBT with Trench Collector (트렌치 콜렉터를 가지는 새로운 TIGBT 에 관한 연구)

  • Lee, Jae-In;Yang, Sung-Min;Bae, Young-Seok;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.3
    • /
    • pp.190-193
    • /
    • 2010
  • Various power semiconductor devices have been developed and evolved since 1950s. Among them, IGBT is the most developed power semiconductor device which has high breakdown voltage, high current conduction and suitable switching speed which perform trade-offs between each other. In other words, there are trade-offs between a breakdown voltage and on-state voltage drop, and between on-state voltage drop and turn-off time. In this paper, the new structure is proposed to improve a trade-off between a breakdown voltage and on-state voltage drop. The proposed structure has a trench collector and this trench collector induces an accumulation layer at the bottom of an n-drift region during off-state. And this accumulation layer prevents expansion of depletion layer so that trapezoidal electric field distribution is performed in the n-drift region. As a result of this, breakdown voltage is increased without increasing on-state voltage drop. The electrical characteristics of the proposed IGBT is analyzed and optimized by using representative device simulator, TSUPREM4 and MEDICI. After optimization, the electrical characteristics of the proposed IGBT is compared with NPT IGBT which have the same device thickness. As a result of this, it can be confirmed that the proposed structure increases the breakdown voltage of 800 V than that of the conventional NPT IGBT without increasing the on-state voltage drop.

The Characteristics of a Dual gate Trench Emitter IGBT (이중 Gate를 갖는 Trench Emitter IGBT의 특성)

  • Gang, Yeong-Su;Jeong, Sang-Gu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.9
    • /
    • pp.523-526
    • /
    • 2000
  • A dual gate trench emitter IGBT structure is proposed and studied numerically using the device simulator MEDICI. The on-state forward voltage drop latch-up current density turn-off time and breakdown voltage of the proposed structure are compared with those of the conventional DMOS-IGBT and trench gate IGBT structures. The proposed structure forms an additional channel and increases collector current level resulting in reduction of on -state forward voltage drop. In addition the trench emitter increases latch-up current density by 148% in comparison with that for the conventional DMOS-IGBT and by 83% compared with that for the trench gate IGBT without degradation in breakdown voltage when the half trench gate width(Tgw) and trench emitter depth(Ted) are fixed at $1.5\mum\; and\; 2\mum$, respectively

  • PDF

Characteristics of Lateral Structure Transistor (횡방향 구조 트랜지스터의 특성)

  • 이정환;서희돈
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.12
    • /
    • pp.977-982
    • /
    • 2000
  • Conventional transistors which have vertical structure show increased parasitic capacitance characteristics in accordance with the increase of non-active base area and collector area. These consequently have disadvantage for high speed switching performance. In this paper, a lateral structure transistor which has minimized parasitic capacitance by using SDB(Silicon Direct Bonding) wafer and oxide sidewall isolation utilizing silicon trench technology is presented. Its structural characteristics are designed by ATHENA(SUPREM4), the process simulator from SILVACO International, and its performance is proven by ATLAS, the device simulator from SILVACO International. The performance of the proposed lateral structure transistor is certified through the V$\_$CE/-I$\_$C/ characteristics curve, h$\_$FE/-I$\_$C/ characteristics, and GP-plot. Cutoff Frequency is 13.7㎓.

  • PDF

Lateral Structure Transistor by Silicon Direct Bonding Technology (실리콘 직접접합 기술을 이용한 횡방향 구조 트랜지스터)

  • 이정환;서희돈
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.759-762
    • /
    • 2000
  • Present transistors which have vertical structure show increased parasitic capacitance characteristics in accordance with the increase of non-active base area and collector area, consequently have disadvantage for high speed switching performance. In this paper, a horizontal structure transistor which has minimized parasitic capacitance in virtue of SDB(Silicon Direct Bonding) wafer and oxide sidewall isolation utilizing silicon trench technology is presented. Its structural characteristics were designed by ATHENA(SUPREM4), the process simulator from SILVACO International, and its performance was proven by ATLAS, the device simulator from SILVACO International. The performance of the proposed horizontal structure transistor was certified through the VCE-lC characteristics curve, $h_{FE}$ -IC characteristics, and GP-plot.

  • PDF

Hydrological Characteristics of Subsurface Stormflow through Soil Matrix and Macropores on forested Hillslopes (산지 사면에서 토양체와 대공극을 통해 발생하는 지표하 호우류의 수문학적 특성)

  • Kim, Kyong-Ha
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.777-785
    • /
    • 1997
  • This study was conducted to clarify the hydrological characteristics of subsurface flow through a soil matrix and macropores. The research facility was set up in a 20m-1ong trench excavated down to bedrock at the base of a hillslope in the Panola catchment under USGS Georgia district. 13 macropores were found on the trench face and 6 major macropores were monitored. Matrix and macropore flow were measured during 95.5mm rainfall on March, 6 to 7. 1996. Macropore flow had great influence on formation of peak flow because the delivery time to Peak flow of macropore flow were faster about 10hrs than those of matrix flow. Matrix flow continued to recess for 3 days. On the other hand, macropore flow stopped within 12hrs after the event ceased. This means that matrix flow controls the recession part. The spatial variations of matrix and macropore flow between each trough and collector were very large by a wide range of 8,655.3 $\ell$ to 17.8 $\ell$ . The bed rock surface topography relates closer with the spatial variations of the flow than the surface one.

  • PDF

A novel TIGBT tructure with improved electrical characteristics (향상된 전기적 특성을 갖는 트렌치 게이트형 절연 게이트 바이폴라 트랜지스터에 관한 연구)

  • Koo, Yong-Seo;Son, Jung-Man
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.158-164
    • /
    • 2007
  • In this study, three types of a novel Trench IGBTs(Insulated Gate Bipolar Transistor) are proposed. The first structure has P-collector which is isolated by $SiO_2$ layer to enhance anode-injection-efficiency and enable the device to have a low on-state voltage drop(Von). And the second structure has convex P-base region between both gates. This structure may be effective to distributes electric-field crowded to gate edge. So this structure can have higher breakdown voltage(BV) than conventional trench-type IGBT(TIGBT). The process and device simulation results show improved on-state, breakdown and switching characteristics in each structure. The first one was presented lower on state voltage drop(2.1V) than that of conventional one(2.4V). Also, second structurehas higher breakdown voltage(1220V) and faster turn off time(9ns) than that of conventional structure. Finally, the last one of the proposed structure has combined the two structure (the first one and second one). This structure has superior electric characteristics than conventional structure about forward voltage drop and blocking capability, turnoff characteristics.

  • PDF