• Title/Summary/Keyword: Treatment dose verification

Search Result 117, Processing Time 0.019 seconds

Development of Quality Assurance Software for $PRESAGE^{REU}$ Gel Dosimetry ($PRESAGE^{REU}$ 겔 선량계의 분석 및 정도 관리 도구 개발)

  • Cho, Woong;Lee, Jaegi;Kim, Hyun Suk;Wu, Hong-Gyun
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.233-241
    • /
    • 2014
  • The aim of this study is to develop a new software tool for 3D dose verification using $PRESAGE^{REU}$ Gel dosimeter. The tool included following functions: importing 3D doses from treatment planning systems (TPS), importing 3D optical density (OD), converting ODs to doses, 3D registration between two volumetric data by translational and rotational transformations, and evaluation with 3D gamma index. To acquire correlation between ODs and doses, CT images of a $PRESAGE^{REU}$ Gel with cylindrical shape was acquired, and a volumetric modulated arc therapy (VMAT) plan was designed to give radiation doses from 1 Gy to 6 Gy to six disk-shaped virtual targets along z-axis. After the VMAT plan was delivered to the targets, 3D OD data were reconstructed from 512 projection data from $Vista^{TM}$ optical CT scanner (Modus Medical Devices Inc, Canada) per every 2 hours after irradiation. A curve for converting ODs to doses was derived by comparing TPS dose profile to OD profile along z-axis, and the 3D OD data were converted to the absorbed doses using the curve. Supra-linearity was observed between doses and ODs, and the ODs were decayed about 60% per 24 hours depending on their magnitudes. Measured doses from the $PRESAGE^{REU}$ Gel were well agreed with the TPS doses at central region, but large under-doses were observed at peripheral region at the cylindrical geometry. Gamma passing rate for 3D doses was 70.36% under the gamma criteria of 3% of dose difference and 3 mm of distance to agreement. The low passing rate was resulted from the mismatching of the refractive index between the PRESAGE gel and oil bath in the optical CT scanner. In conclusion, the developed software was useful for 3D dose verification from PRESAGE gel dosimetry, but further improvement of the Gel dosimetry system were required.

The Investigation Regarding the Dose Change due to the Heterogeneity of Prostate Cancer Treatment with IMRT (전립선암의 세기조절 방사선치료 시 불균질부에 의한 선량변화에 관한 고찰)

  • Yoon, Il-Kyu;Park, Jang-Pil;Lee, Jae-Hee;Park, Heung-Deuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.2
    • /
    • pp.107-112
    • /
    • 2007
  • Purpose: The pelvic phantom was fabricated in the following purposes: (1) Dose verification of IMRT plan using Eclipse planning computer, (2) to study the interface effect at the interface between rectal wall and air. The TLD can be inserted in the pelvic phantom to confirm the dose distribution as well as uncertainty at the interface. Materials and Methods: A pelvic phantom with the dimension of 30 cm diameter, 20 cm height and 20 cm thickness was fabricated to investigate the dose at the rectal wall. The phantom was filled with water and has many features like bladder, rectum, and prostate and seminal vesicle (SV). The rectum is made of 3 cm-dimater plastic pipe, and it cab be blocked by using a plug, and film can be inserted around the rectal wall. The phantom was scanned with Philips Brillance scanner and various organs such as prostate, SV, and rectal wall, and bladder wall were delineated. The treatment parameters used in this study are the same as those used in the protocols in the SNUH. TLD chips are inserted to the phantom to evaluate the dose distribution to the rectal wall (to simulate high dose gradient region), bladder wall and SV (to simulate the high dose region) and 2 spots in anterior surface (to simulate the low dose region). The TLD readings are compared with those of the planning computer (ECLIPSE, Varian, USA). Results: The target TLD doses represented as the prostate and SV show excellent agreements with the doses from the RTP within +/-3%. The rectal wall doses measured at the rectal wall are different from the those of the RTP by -11%. This is in literatures called as an interface effect. The underdosages at the rectal wall is independent of 3 heterogeneity correction algorithm in the Eclipse RTP. Also the low dose regions s represented as surface in this study were within +/-1%. Conclusion: The RTP estimate the dosage very accurately withihn +/-3% in the high dose (SV, or prostate) and low dose region (surface). However, the dosage at the rectal wall differed by as much as 11% (In literatures, the underdosage of 9$\sim$15% were reported). This range of errors occurs at the interface, for example, at the interface between lung and chest wall, or vocal cord. This interface effect is very important in clinical situations, for example, to estimate the NTCP (normal tissue complication probability) and to estimate the limitations of the current RTP system. Monte-carlo-based RTP will handle this issue correctly.

  • PDF

Patient-Specific Quality Assurance in a Multileaf Collimator-Based CyberKnife System Using the Planar Ion Chamber Array

  • Yoon, Jeongmin;Lee, Eungman;Park, Kwangwoo;Kim, Jin Sung;Kim, Yong Bae;Lee, Ho
    • Progress in Medical Physics
    • /
    • v.29 no.2
    • /
    • pp.59-65
    • /
    • 2018
  • This paper describes the clinical use of the dose verification of multileaf collimator (MLC)-based CyberKnife plans by combining the Octavius 1000SRS detector and water-equivalent RW3 slab phantom. The slab phantom consists of 14 plates, each with a thickness of 10 mm. One plate was modified to support tracking by inserting 14 custom-made fiducials on surface holes positioned at the outer region of $10{\times}10cm^2$. The fiducial-inserted plate was placed on the 1000SRS detector and three plates were additionally stacked up to build the reference depth. Below the detector, 10 plates were placed to avoid longer delivery times caused by proximity detection program alerts. The cross-calibration factor prior to phantom delivery was obtained by performing with 200 monitor units (MU) on the field size of $95{\times}92.5mm^2$. After irradiation, the measured dose distribution of the coronal plane was compared with the dose distribution calculated by the MultiPlan treatment planning system. The results were assessed by comparing the absolute dose at the center point of 1000SRS and the 3-D Gamma (${\gamma}$) index using 220 patient-specific quality assurance (QA). The discrepancy between measured and calculated doses at the center point of 1000SRS detector ranged from -3.9% to 8.2%. In the dosimetric comparison using 3-D ${\gamma}$-function (3%/3 mm criteria), the mean passing rates with ${\gamma}$-parameter ${\leq}1$ were $97.4%{\pm}2.4%$. The combination of the 1000SRS detector and RW3 slab phantom can be utilized for dosimetry validation of patient-specific QA in the CyberKnife MLC system, which made it possible to measure absolute dose distributions regardless of tracking mode.

IMRT and IMRS Checking the Dose Distribution in the Small Field Evaluation of Measurement by Changes in SAD (IMRT 및 IMRS에서 Small Field의 선량분포 확인시 SAD 변화에 따른 측정의 유용성 평가)

  • Ko, Seung-Young;Kim, Sung-Joon;Park, Gir-Yong;Son, Mi-Suk;Lee, Nam-Ki;Kim, Jin-Soo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.1
    • /
    • pp.33-39
    • /
    • 2010
  • Purpose: It is very important to confirm conformance of dose distribution that is formed with treatment planning from IMRS or IMRT. It has been a problem dropped accuracy and conformance when the field size is getting smaller because of character of the 2D ion chamber. Verification of MatriXX Phantom dose distribution with a change in the SAD. Dose distribution measurement and analysis to improve the accuracy and should be useful to evaluate the award. Materials and Methods: A use of Novalis linear accelerator 6 MV photon beams. In general, IMRS were 25 patients with small field size. The selected patients were divided into three groups on the basis of the field size. SAD was changed from 80 to 130 cm and field size to determine the dose distribution to the change, each dose was measured using MatriXX Phantom. Analysis of measured values obtained from the program for each patient through the treatment planning system comparison and analysis of the dose distribution and gamma values were expressed. Result: SAD 80, 100, and 120 cm in size in the gamma value to the investigation of patients less than $3\;cm^2$ average 0.939, 0.969, and 0.979, respectively. Patients with more than $5\;cm^2$ 0.962, 0.983, and 0.988, respectively. $5\;cm^2$ or more patients 0.982, 0.990, and 0.992, respectively. Conclusion: The error rate of less than $3\;cm^2$ field size is increased rapidly. If the field size is increased, resolution is increased by 2D ion chambers. It has been approved that it can be credible if it is around $3\;cm^2$ when measuring dose distribution using MatriXX. Adjusting geometric field size by changing SAD is likely to be very useful when you measure dose distribution using MatriXX.

  • PDF

The Comparison of Beam Data between Measured Beam Data and Calculated Beam Data Using Treatment Planning System (6 MV 광자선의 측정데이터와 치료계획장치에 의한 계산데이터의 비교)

  • Park Sung Kwang;Cho Byung Chul;Cho Heung Lae;Ahn Ki Jung
    • Progress in Medical Physics
    • /
    • v.16 no.3
    • /
    • pp.125-129
    • /
    • 2005
  • The first step in the commissioning procedure of a treatment planning system is always verification of the basic beam data. In this work, we have measured POD curves and beam profiles between 1 $\times$ 1 cm$^{2}$ and 40 $\times$ 40 cm$^{2}$ . In an attempt, Pinnacle 7.4f detect discrepancies between predicted dose distribution and delivered dose distribution. The discrepancies between measurement data and caculation data was found. The delivered dose was underestimated in field but overestimated out of field. The D$_{max}$ depth of 1 $\times$ 1 cm$^{2}$ was reduced about 2 mm. For the larger field size ($\geq$4$\times$4 cm$^{2}$, the beam profile and PDD curve showed good agreement between measurement data and calculation data.

  • PDF

Quality Assurance of Patients for Intensity Modulated Radiation Therapy (세기조절방사선치료(IMRT) 환자의 QA)

  • Yoon Sang Min;Yi Byong Yong;Choi Eun Kyung;Kim Jong Hoon;Ahn Seung Do;Lee Sang-Wook
    • Radiation Oncology Journal
    • /
    • v.20 no.1
    • /
    • pp.81-90
    • /
    • 2002
  • Purpose : To establish and verify the proper and the practical IMRT (Intensity--modulated radiation therapy) patient QA (Quality Assurance). Materials and Methods : An IMRT QA which consists of 3 steps and 16 items were designed and examined the validity of the program by applying to 9 patients, 12 IMRT cases of various sites. The three step OA program consists of RTP related QA, treatment information flow QA, and a treatment delivery QA procedure. The evaluation of organ constraints, the validity of the point dose, and the dose distribution are major issues in the RTP related QA procedure. The leaf sequence file generation, the evaluation of the MLC control file, the comparison of the dry run film, and the IMRT field simulate image were included in the treatment information flow procedure QA. The patient setup QA, the verification of the IMRT treatment fields to the patients, and the examination of the data in the Record & Verify system make up the treatment delivery QA procedure. Results : The point dose measurement results of 10 cases showed good agreement with the RTP calculation within $3\%$. One case showed more than a $3\%$ difference and the other case showed more than $5\%$, which was out side the tolerance level. We could not find any differences of more than 2 mm between the RTP leaf sequence and the dry run film. Film dosimetry and the dose distribution from the phantom plan showed the same tendency, but quantitative analysis was not possible because of the film dosimetry nature. No error had been found from the MLC control file and one mis-registration case was found before treatment. Conclusion : This study shows the usefulness and the necessity of the IMRT patient QA program. The whole procedure of this program should be peformed, especially by institutions that have just started to accumulate experience. But, the program is too complex and time consuming. Therefore, we propose practical and essential QA items for institutions in which the IMRT is performed as a routine procedure.

Radiation Therapy Using M3 Wax Bolus in Patients with Malignant Scalp Tumors (악성 두피 종양(Scalp) 환자의 M3 Wax Bolus를 이용한 방사선치료)

  • Kwon, Da Eun;Hwang, Ji Hye;Park, In Seo;Yang, Jun Cheol;Kim, Su Jin;You, Ah Young;Won, Young Jinn;Kwon, Kyung Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.75-81
    • /
    • 2019
  • Purpose: Helmet type bolus for 3D printer is being manufactured because of the disadvantages of Bolus materials when photon beam is used for the treatment of scalp malignancy. However, PLA, which is a used material, has a higher density than a tissue equivalent material and inconveniences occur when the patient wears PLA. In this study, we try to treat malignant scalp tumors by using M3 wax helmet with 3D printer. Methods and materials: For the modeling of the helmet type M3 wax, the head phantom was photographed by CT, which was acquired with a DICOM file. The part for helmet on the scalp was made with Helmet contour. The M3 Wax helmet was made by dissolving paraffin wax, mixing magnesium oxide and calcium carbonate, solidifying it in a PLA 3D helmet, and then eliminated PLA 3D Helmet of the surface. The treatment plan was based on Intensity-Modulated Radiation Therapy (IMRT) of 10 Portals, and the therapeutic dose was 200 cGy, using Analytical Anisotropic Algorithm (AAA) of Eclipse. Then, the dose was verified by using EBT3 film and Mosfet (Metal Oxide Semiconductor Field Effect Transistor: USA), and the IMRT plan was measured 3 times in 3 parts by reproducing the phantom of the head human model under the same condition with the CT simulation room. Results: The Hounsfield unit (HU) of the bolus measured by CT was $52{\pm}37.1$. The dose of TPS was 186.6 cGy, 193.2 cGy and 190.6 cGy at the M3 Wax bolus measurement points of A, B and C, and the dose measured three times at Mostet was $179.66{\pm}2.62cGy$, $184.33{\pm}1.24cGy$ and $195.33{\pm}1.69cGy$. And the error rates were -3.71 %, -4.59 %, and 2.48 %. The dose measured with EBT3 film was $182.00{\pm}1.63cGy$, $193.66{\pm}2.05cGy$ and $196{\pm}2.16cGy$. The error rates were -2.46 %, 0.23 % and 2.83 %. Conclusions: The thickness of the M3 wax bolus was 2 cm, which could help the treatment plan to be established by easily lowering the dose of the brain part. The maximum error rate of the scalp surface dose was measured within 5 % and generally within 3 %, even in the A, B, C measurements of dosimeters of EBT3 film and Mosfet in the treatment dose verification. The making period of M3 wax bolus is shorter, cheaper than that of 3D printer, can be reused and is very useful for the treatment of scalp malignancies as human tissue equivalent material. Therefore, we think that the use of casting type M3 wax bolus, which will complement the making period and cost of high capacity Bolus and Compensator in 3D printer, will increase later.

Independent Verification Program for High-Dose-Rate Brachytherapy Treatment Plans (고선량률 근접치료계획의 정도보증 프로그램)

  • Han Youngyih;Chu Sung Sil;Huh Seung Jae;Suh Chang-Ok
    • Radiation Oncology Journal
    • /
    • v.21 no.3
    • /
    • pp.238-244
    • /
    • 2003
  • Purpose: The Planning of High-Dose-Rate (HDR) brachytherapy treatments are becoming individualized and more dependent on the treatment planning system. Therefore, computer software has been developed to perform independent point dose calculations with the integration of an isodose distribution curve display into the patient anatomy images. Meterials and Methods: As primary input data, the program takes patients'planning data including the source dwell positions, dwell times and the doses at reference points, computed by an HDR treatment planning system (TPS). Dosimetric calculations were peformed in a $10\times12\times10\;Cm^3$ grid space using the Interstitial Collaborative Working Group (ICWG) formalism and an anisotropy table for the HDR Iridium-192 source. The computed doses at the reference points were automatically compared with the relevant results of the TPS. The MR and simulation film images were then imported and the isodose distributions on the axial, sagittal and coronal planes intersecting the point selected by a user were superimposed on the imported images and then displayed. The accuracy of the software was tested in three benchmark plans peformed by Gamma-Med 12i TPS (MDS Nordion, Germany). Nine patients'plans generated by Plato (Nucletron Corporation, The Netherlands) were verified by the developed software. Results: The absolute doses computed by the developed software agreed with the commercial TPS results within an accuracy of $2.8\%$ in the benchmark plans. The isodose distribution plots showed excellent agreements with the exception of the tip legion of the source's longitudinal axis where a slight deviation was observed. In clinical plans, the secondary dose calculations had, on average, about a $3.4\%$ deviation from the TPS plans. Conclusion: The accurate validation of complicate treatment plans is possible with the developed software and the qualify of the HDR treatment plan can be improved with the isodose display integrated into the patient anatomy information.

Evaluation of Fabricated Semiconductor Sensor for Verification of γ-ray Distribution in Brachytherapy (근접치료용 방사성 동위원소의 선량분포 확인을 위한 디지털 반도체 센서의 제작 및 평가)

  • Park, Jeong-Eun;Kim, Kyo-Tae;Choi, Won-Hoon;Lee, Ho;Cho, Sam-Joo;Ahn, So-Hyun;Kim, Jin-Young;Song, Yong-Keun;Kim, Keum-bae;Huh, Hyun-Do;Park, Sung-Kwang
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.280-285
    • /
    • 2015
  • In radiation therapy fields, a brachytherapy is a treatment that kills lesion of cells by inserting a radioisotope that keeps emitting radiation into the body. We currently verify the consistency of radiation treatment plan and dose distribution through film/screen system (F/S system), provide therapy after checking dose. When we check dose distribution, F/S systems have radiation signal distortion because there is low resolution by penumbra depending on the condition of film developed. In this study, We fabricated a $HgI_2$ Semiconductor radiation sensor for base study in order that we verify the real dose distribution weather it's same as plans or not in brachytherapy. Also, we attempt to evaluate the feasibility of QA system by utilizing and evaluating the sensor to brachytherapy source. As shown in the result of detected signal with various source-to-detector distance (SDD), we quantitatively verified the real range of treatment which is also equivalent to treatment plans because only the low signal estimated as scatters was measured beyond the range of treatment. And the result of experiment that we access reproducibility on the same condition of ${\gamma}$-ray, we have made sure that the CV (coefficient of variation) is within 1.5 percent so we consider that the $HgI_2$ sensor is available at QA of brachytherapy based on the result.

4-Dimensional dose evaluation using deformable image registration in respiratory gated radiotherapy for lung cancer (폐암의 호흡동조방사선치료 시 변형영상정합을 이용한 4차원 선량평가)

  • Um, Ki Cheon;Yoo, Soon Mi;Yoon, In Ha;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.83-95
    • /
    • 2018
  • Purpose : After planning the Respiratory Gated Radiotherapy for Lung cancer, the movement and volume change of sparing normal structures nearby target are not often considered during dose evaluation. This study carried out 4-D dose evaluation which reflects the movement of normal structures at certain phase of Respiratory Gated Radiotherapy, by using Deformable Image Registration that is well used for Adaptive Radiotherapy. Moreover, the study discussed the need of analysis and established some recommendations, regarding the normal structures's movement and volume change due to Patient's breathing pattern during evaluation of treatment plans. Materials and methods : The subjects were taken from 10 lung cancer patients who received Respiratory Gated Radiotherapy. Using Eclipse(Ver 13.6 Varian, USA), the structures seen in the top phase of CT image was equally set via Propagation or Segmentation Wizard menu, and the structure's movement and volume were analyzed by Center-to Center method. Also, image from each phase and the dose distribution were deformed into top phase CT image, for 4-dimensional dose evaluation, via VELOCITY Program. Also, Using $QUASAR^{TM}$ Phantom(Modus Medical Devices) and $GAFCHROMIC^{TM}$ EBT3 Film(Ashland, USA), verification carried out 4-D dose distribution for 4-D gamma pass rate. Result : The movement of the Inspiration and expiration phase was the most significant in axial direction of right lung, as $0.989{\pm}0.34cm$, and was the least significant in lateral direction of spinal cord, as -0.001 cm. The volume of right lung showed the greatest rate of change as 33.5 %. The maximal and minimal difference in PTV Conformity Index and Homogeneity Index between 3-dimensional dose evaluation and 4-dimensional dose evaluation, was 0.076, 0.021 and 0.011, 0.0 respectfully. The difference of 0.0045~2.76 % was determined in normal structures, using 4-D dose evaluation. 4-D gamma pass rate of every patients passed reference of 95 % gamma pass rate. Conclusion : PTV Conformity Index was more significant in all patients using 4-D dose evaluation, but no significant difference was observed between two dose evaluations for Homogeneity Index. 4-D dose distribution was shown more homogeneous dose compared to 3D dose distribution, by considering the movement from breathing which helps to fill out the PTV margin area. There was difference of 0.004~2.76 % in 4D evaluation of normal structure, and there was significant difference between two evaluation methods in all normal structures, except spinal cord. This study shows that normal structures could be underestimated by 3-D dose evaluation. Therefore, 4-D dose evaluation with Deformable Image Registration will be considered when the dose change is expected in normal structures due to patient's breathing pattern. 4-D dose evaluation with Deformable Image Registration is considered to be a more realistic dose evaluation method by reflecting the movement of normal structures from patient's breathing pattern.

  • PDF