• Title/Summary/Keyword: Transverse Displacement

검색결과 468건 처리시간 0.031초

Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model

  • Bellal, Moussa;Hebali, Habib;Heireche, Houari;Bousahla, Abdelmoumen Anis;Tounsi, Abdeldjebbar;Bourada, Fouad;Mahmoud, S.R.;Bedia, E.A. Adda;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제34권5호
    • /
    • pp.643-655
    • /
    • 2020
  • In the present work, the buckling behavior of a single-layered graphene sheet (SLGS) embedded in visco-Pasternak's medium is studied using nonlocal four-unknown integral model. This model has a displacement field with integral terms which includes the effect of transverse shear deformation without using shear correction factors. The visco-Pasternak's medium is introduced by considering the damping effect to the classical foundation model which modeled by the linear Winkler's coefficient and Pasternak's (shear) foundation coefficient. The SLGS under consideration is subjected to compressive in- plane edge loads per unit length. The influences of many parameters such as nonlocal parameter, geometric ratio, the visco-Pasternak's coefficients, damping parameter, and mode numbers on the buckling response of the SLGSs are studied and discussed.

A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis

  • Kaddari, Miloud;Kaci, Abdelhakim;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Bourada, Fouad;Tounsi, Abdeldjebbar;Bedia, E.A. Adda;Al-Osta, Mohammed A.
    • Computers and Concrete
    • /
    • 제25권1호
    • /
    • pp.37-57
    • /
    • 2020
  • This work investigates a new type of quasi-3D hyperbolic shear deformation theory is proposed in this study to discuss the statics and free vibration of functionally graded porous plates resting on elastic foundations. Material properties of porous FG plate are defined by rule of the mixture with an additional term of porosity in the through-thickness direction. By including indeterminate integral variables, the number of unknowns and governing equations of the present theory is reduced, and therefore, it is easy to use. The present approach to plate theory takes into account both transverse shear and normal deformations and satisfies the boundary conditions of zero tensile stress on the plate surfaces. The equations of motion are derived from the Hamilton principle. Analytical solutions are obtained for a simply supported plate. Contrary to any other theory, the number of unknown functions involved in the displacement field is only five, as compared to six or more in the case of other shear and normal deformation theories. A comparison with the corresponding results is made to verify the accuracy and efficiency of the present theory. The influences of the porosity parameter, power-law index, aspect ratio, thickness ratio and the foundation parameters on bending and vibration of porous FG plate.

곡선보의 자유진동해석을 위한 고차 혼합요소 (A New Higher-Order Hybrid-Mixed Element for Curved Beam Vibrations)

  • 김진곤;박용국
    • 한국전산구조공학회논문집
    • /
    • 제19권2호
    • /
    • pp.151-160
    • /
    • 2006
  • 본 연구에서는 균일단면 뿐만 아니라 불균일 단면을 갖는 곡선보의 동적해석을 효과적으로 수행할 수 있는 새로운 2절점 곡선보 요소를 제안하였다. 전단변형률을 고려한 본 요소는 Hellinger-Reissner 변분이론에 바탕하여 유한요소정식화를 수행하였다. 또한, 변위장에 대해 무절점 자유도를 추가적으로 도입하여 요소의 수치적 성능을 크게 향상시켰다. 계산의 효율성을 위해, 요소정식화의 최종단계에서 정치조건으로부터 응력매개변수들을 제거하고, 동적축약을 통하여 무절점 자유도 성분들 또한 최종적인 유한요소방정식에서 제거되어 일반적인 변위기저 요소와 같은 자유도를 가지는 유한요소방정식을 얻을 수 있다. 몇 가지 수치예제들에 대한 해석을 통하여, 무절점 자유도와 변위장에 일치하는 적절한 응력매개변수가 혼합요소의 수치적 거동에 미치는 영향을 분석하였으며, 본 연구에서 제안된 2절점 혼합요소가 곡선보의 동적해석에서 매우 정확하고 효율적임을 확인할 수 있었다.

가스시설물의 등가정적 해석에 의한 내진성능 평가 (The Estimation of earthquake-resistance for gas utility using Equivalent Static Analysis)

  • 고재필;홍성경;김준호;정석영
    • 한국가스학회지
    • /
    • 제6권4호
    • /
    • pp.23-32
    • /
    • 2002
  • 내진설계기준은 시설물의 사회적, 경제적 중요성과 구조적 특성이 잘 반영될 수 있도록 설정되어야 한다. 즉 우선적으로 시설물별로 중요성과 특성에 따른 내진설계의 기본적인 원칙이 설정되고 이에 따라 적절한 해석 및 설계, 시공방법이 결정되어야 한다. 한국가스공사의 평택과 인천 및 통영에 있는 가스생산선비들 중 LNG 저장탱크는 원자력 발전소 기준 내진설계가 적용되어 있다. 가스 생산선비 중 저장탱크 다음으로 중요한 시설로는 중앙조정실을 들 수 있다. 중앙조정실에서는 각종 설비의 조작 및 이상유무를 판단하고 조정하는 장비들이 갖추어져 있으므로 지진에 대한 내진설계가 더욱 중요한 곳이다. 이러한 이유로 평택생산기지 중앙조정실의 내진성능을 점검하였고, 그 방법으로 건축물에 적용되고 있는 등가정적 해석법에 의한 내진성능을 평가하였다.

  • PDF

변환각 트러스 모델에 의한 철근콘크리트 기둥의 전단거동 예측 (Shear Behavior Prediction of Reinforced Concrete Columns Using Transformation Angle Truss Model)

  • 김상우;채희대;이정윤;이범식
    • 콘크리트학회논문집
    • /
    • 제17권3호
    • /
    • pp.435-444
    • /
    • 2005
  • 본 연구에서는 휨모멘트와 축력의 효과가 고려된 변환각 트러스 모델(TATM)을 이용하여 철근콘크리트 기둥의 전단거동을 예측하였다. TATM의 해석결과를 검증하기 위하여 다양한 전단경간비와 축력비를 가지는 총 9개의 철근콘크리트 기둥을 전단 실험하였다. 철근콘크리트 기둥의 곡률, 축변형 및 전단변형을 측정하기 위하여 기둥 옆면 전단위험단면을 중심으로 5개의 변위변환기(LVDT)를 설치하였다. 하중은 최대하중의 $85\%$ 이하로 떨어질 때까지 가력하였으며, 모든 실험체는 휨 철근의 항복이전에 전단파괴 되었다. 기둥의 전단강도와 강성은 축 하중이 증가할수록 증가하는 반면 전단경간비가 증가할수록 감소하였다. TATM으로부터 얻은 전단응력-전단변형률 관계와 전단응력-전단철근변형률 관계는 본 연구에서 수행된 실험결과와 잘 일치하였으며, 기존의 트러스 모델(MCFT, RA-STM, FA-STM)보다 더 우수하였다.

개선된 저차 전단 변형 이론을 이용한 전기, 기계 하중을 받는 스마트 복합재 구조물의 연성 해석 (A Coupled Analysis of Smart Plate Under Electro-Mechanical Loading Using Enhanced Lower-Order Shear Deformation Theory)

  • 오진호;조맹효;김준식
    • 대한기계학회논문집A
    • /
    • 제31권1호
    • /
    • pp.121-128
    • /
    • 2007
  • Enhanced lower order shear deformation theory is developed in this study. Generally, lower order theories are not adequate to predict accurate deformation and stress distribution through the thickness of laminated plate. For the accurate prediction of detailed stress and deformation distributions through the thickness, higher order zigzag theories have been proposed. However, in most cases, simplified zigzag higher order theory requires $C_1$, shape functions in finite element implementation. In commercial FE softwares, $C_1$, shape functions are not so common in plate and shell analysis. Thus zigzag theories are useful for the highly accurate prediction of thick composite behaviors but they are not practical in the sense that they cannot be used conveniently in the commercial package. In practice, iso-parametric $C_0$ plate model is the standard model for the analysis and design of composite laminated plates and shells. Thus in the present study, an enhanced lower order shear deformation theory is developed. The proposed theory requires only $C_0$ shape function in FE implementation. The least-squared energy error between the lower order theory and higher order theory is minimized. An enhanced lower order shear deformation theory(ELSDT) in this paper is proposed for smart structure under complex loadings. The ELSDT is constructed by the strain energy transformation and fully coupled mechanical, electric loading cases are studied. In order to obtain accurate prediction, zigzag in-plane displacement and transverse normal deformation are considered in the deformation Held. In the electric behavior, open-circuit condition as well as closed-circuit condition is considered. Through the numerous examples, the accuracy and robustness of present theory are demonstrated.

A numerical and theoretical investigation on composite pipe-in-pipe structure under impact

  • Wang, Yu;Qian, Xudong;Liew, J.Y. Richard;Zhang, Min-Hong
    • Steel and Composite Structures
    • /
    • 제22권5호
    • /
    • pp.1085-1114
    • /
    • 2016
  • This paper investigates the transverse impact response for ultra lightweight cement composite (ULCC) filled pipe-in-pipe structures through a parametric study using both a validated finite element procedure and a validated theoretical model. The parametric study explores the effect of the impact loading conditions (including the impact velocity and the indenter shape), the geometric properties (including the pipe length and the dimensions of the three material layers) as well as the material properties (including the material properties of the steel pipes and the filler materials) on the impact response of the pipe-in-pipe composite structures. The global impact responses predicted by the FE procedure and by the theoretical model agree with each other closely. The parametric study using the theoretical approach indicates the close relationships among the global impact responses (including the maximum impact force and the maximum global displacement) in specimens with the equivalent thicknesses, proposed in the theoretical model, for the pipe-in-pipe composite structures. In the pipe-in-pipe composite structure, the inner steel pipe, together with the outer steel pipe, imposes a strong confinement on the infilled cement composite and enhances significantly the composite action, leading to improved impact resistance, small global and local deformations.

An efficient shear deformation theory for wave propagation in functionally graded material beams with porosities

  • Benadouda, Mourad;Atmane, Hassen Ait;Tounsi, Abdelouahed;Bernard, Fabrice;Mahmoud, S.R.
    • Earthquakes and Structures
    • /
    • 제13권3호
    • /
    • pp.255-265
    • /
    • 2017
  • In this paper, an efficient shear deformation theory is developed for wave propagation analysis in a functionally graded beam. More particularly, porosities that may occur in Functionally Graded Materials (FGMs) during their manufacture are considered. The proposed shear deformation theory is efficient method because it permits us to show the effect of both bending and shear components and this is carried out by dividing the transverse displacement into the bending and shear parts. Material properties are assumed graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents; but the rule of mixture is modified to describe and approximate material properties of the functionally graded beams with porosity phases. The governing equations of the wave propagation in the functionally graded beam are derived by employing the Hamilton's principle. The analytical dispersion relation of the functionally graded beam is obtained by solving an eigenvalue problem. The effects of the volume fraction distributions, the depth of beam, the number of wave and the porosity on wave propagation in functionally graded beam are discussed in details. It can be concluded that the present theory is not only accurate but also simple in predicting the wave propagation characteristics in the functionally graded beam.

A Position based Kinematic Method for the Analysis of Human Gait

  • Choi Ahn Ryul;Rim Yong Hoon;Kim Youn Soo;Mun Joung Hwan
    • Journal of Mechanical Science and Technology
    • /
    • 제19권10호
    • /
    • pp.1919-1931
    • /
    • 2005
  • Human joint motion can be kinematically described in three planes, typically the frontal, sagittal, and transverse, and related to experimentally measured data. The selection of reference systems is a prerequisite for accurate kinematic analysis and resulting development of the equations of motion. Moreover, the development of analysis techniques for the minimization of errors, due to skin movement or body deformation, during experiments involving human locomotion is a critically important step, without which accurate results in this type of experiment are an impossibility. The traditional kinematic analysis method is the Angular-based method (ABM), which utilizes the Euler angle or the Bryant angle. However, this analysis method tends to increase cumulative errors due to skin movement. Therefore, the objective of this study was to propose a new kinematic analysis method, Position-based method (PBM), which directly applies position displacement data to represent locomotion. The PBM presented here was designed to minimize cumulative errors via considerations of angle changes and translational motion between markers occurring due to skin movements. In order to verify the efficacy and accuracy of the developed PBM, the mean value of joint dislocation at the knee during one gait cycle and the pattern of three dimensional translation motion of the tibiofemoral joint at the knee, in both flexion and extension, were accessed via ABM and via new method, PBM, with a Local Reference system (LRS) and Segmental Reference system (SRS), and then the data were compared between the two techniques. Our results indicate that the proposed PBM resulted in improved accuracy in terms of motion analysis, as compared to ABM, with the LRS and SRS.

A novel hyperbolic plate theory including stretching effect for free vibration analysis of advanced composite plates in thermal environments

  • Elmascri, Setti;Bessaim, Aicha;Taleb, Ouahiba;Houari, Mohammed Sid Ahmed;Mohamed, Sekkal;Bernard, Fabrice;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • 제75권2호
    • /
    • pp.193-209
    • /
    • 2020
  • This paper presents a new hyperbolic shear deformation plate theory including the stretching effect for free vibration of the simply supported functionally graded plates in thermal environments. The theory accounts for parabolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the plate without using shear correction factors. This theory has only five unknowns, which is even less than the other shear and normal deformation theories. The present one has a new displacement field which introduces undetermined integral variables. Material properties are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume power laws of the constituents. The equation of motion of the vibrated plate obtained via the classical Hamilton's principle and solved using Navier's steps. The accuracy of the proposed solution is checked by comparing the present results with those available in existing literature. The effects of the temperature field, volume fraction index of functionally graded material, side-to-thickness ratio on free vibration responses of the functionally graded plates are investigated. It can be concluded that the present theory is not only accurate but also simple in predicting the natural frequencies of functionally graded plates with stretching effect in thermal environments.