DOI QR코드

DOI QR Code

A numerical and theoretical investigation on composite pipe-in-pipe structure under impact

  • Wang, Yu (Department of Civil and Environmental Engineering, Centre for Offshore Research and Engineering, National University of Singapore) ;
  • Qian, Xudong (Department of Civil and Environmental Engineering, Centre for Offshore Research and Engineering, National University of Singapore) ;
  • Liew, J.Y. Richard (Department of Civil and Environmental Engineering, Centre for Offshore Research and Engineering, National University of Singapore) ;
  • Zhang, Min-Hong (Department of Civil and Environmental Engineering, Centre for Offshore Research and Engineering, National University of Singapore)
  • Received : 2015.07.29
  • Accepted : 2016.11.11
  • Published : 2016.12.10

Abstract

This paper investigates the transverse impact response for ultra lightweight cement composite (ULCC) filled pipe-in-pipe structures through a parametric study using both a validated finite element procedure and a validated theoretical model. The parametric study explores the effect of the impact loading conditions (including the impact velocity and the indenter shape), the geometric properties (including the pipe length and the dimensions of the three material layers) as well as the material properties (including the material properties of the steel pipes and the filler materials) on the impact response of the pipe-in-pipe composite structures. The global impact responses predicted by the FE procedure and by the theoretical model agree with each other closely. The parametric study using the theoretical approach indicates the close relationships among the global impact responses (including the maximum impact force and the maximum global displacement) in specimens with the equivalent thicknesses, proposed in the theoretical model, for the pipe-in-pipe composite structures. In the pipe-in-pipe composite structure, the inner steel pipe, together with the outer steel pipe, imposes a strong confinement on the infilled cement composite and enhances significantly the composite action, leading to improved impact resistance, small global and local deformations.

Keywords

Acknowledgement

Supported by : Agency for Science Technology and Research (SERC)

References

  1. ABAQUS (2010), ABAQUS/Standard User's Manual; Hibbitt Karlsson and So-rensen Inc., Rising Sun Mills, RI, USA.
  2. An, C., Castello, X., Duan, M., Filho, R.D.T. and Estefen, S.F. (2012), "Ultimate strength behavior of sandwich pipes filled with steel fiber reinforced concrete", Ocean Eng., 55, 125-135. https://doi.org/10.1016/j.oceaneng.2012.07.033
  3. Arabzadeh, H, and Zeinoddini, M. (2011), "Dynamic response of pressurized submarine pipelines subjected to transverse impact loads", Procedia Eng., 14, 648-655. https://doi.org/10.1016/j.proeng.2011.07.082
  4. Arjomandi, K. and Taheri, F. (2011), "Stability and post buckling response of sandwich pipes under hydrostatic external pressure", Int. J. Press Vessels Pip., 88(4), 138-148. https://doi.org/10.1016/j.ijpvp.2011.02.002
  5. Brockenbrough, R.L. and Merritt, F.S. (2006), Structural Steel Designer's Handbook: AISC, AASHTO, AISI, ASTM and ASCE-07 Design Standards; Mcgraw, Inc., New York, NY, USA.
  6. Brooker, D.C. (2005), "Experimental puncture loads for external interference of pipelines by excavator equipment", Int. J. Press Vessels Pip., 82(11), 825-832. https://doi.org/10.1016/j.ijpvp.2005.07.005
  7. Chia, K.S., Zhang, M.H. and Liew, J.Y.R. (2011), "High-strength ultra lightweight cement composite material properties", Proceedings of 9th International Symposium on High Performance Concrete-Design, Verification & Utilization, Primary Section A8-paper 2.
  8. Comite Euro-International du Beton (CEB) (1993), CEB-FIP Model Code 1990; Redwood Books, Trowbridge, Wiltshire, UK.
  9. Crupi, V., Epasto, G. and Guglielmino, E. (2011), "Low-velocity impact strength of sandwich materials", J. Sandw. Struct. Mater., 13(4), 409-426. https://doi.org/10.1177/1099636210385285
  10. DNV-RP-F107 (2010), Risk Assessment of Pipeline Protection; Recommended practice, Det Norske Veritas (DNV).
  11. DNV-RP-F111 (2010), Interference between Trawl Gear and Pipelines; Recommended practice, Det Norske Veritas (DNV).
  12. Ding, X., Fan, Y., Kong, G. and Zheng, C. (2014), "Wave propagation in a concrete filled steel tubular column due to transient impact loading", Steel Compos. Struct., Int. J., 17(6), 891-906. https://doi.org/10.12989/scs.2014.17.6.891
  13. Famiyesin, O.O.R., Oliver, K.D. and Rodger, A.A. (2002), "Semi-empirical equations for pipeline design by the finite element method", Comput. Struct., 80(16-17), 1369-1382. https://doi.org/10.1016/S0045-7949(02)00097-4
  14. Goldsmith, W. (1960), Impact, the Theory and Physical Behavior of Colliding Solids, Edward Arnold Publishers, London, UK.
  15. Hallquist, J.O. (2006), LS-DYNA keyword user manual-nonlinear dynamic analysis of structures;Livermore Software technology Corporation, Livermore, CA, USA.
  16. Han, L.H., Huang, H., Tao, Z. and Zhao, X.L. (2006), "Concrete-filled double skin steel tubular (CFDST) beam-columns subjected to cyclic bending", Eng. Struct., 28(12), 1698-1714. https://doi.org/10.1016/j.engstruct.2006.03.004
  17. Jankowiak, A.R., Kpenyigba, K.M. and Pesci, R (2014), "Ballistic behavior of steel sheet subjected to impact and perforation", Steel Compos. Struct., Int. J., 16(6), 595-609. https://doi.org/10.12989/scs.2014.16.6.595
  18. Jones, N. and Birch, R.S. (2010), "Low-velocity impact of pressurized pipelines", Int. J. Impact Eng., 37(2), 207-219. https://doi.org/10.1016/j.ijimpeng.2009.05.006
  19. Jones, N., Brich, S.E., Birch, R.S., Zhu, L. and Brown, M. (1992), "An experimental study on the lateral impact of fully clamped mild steel pipes", Proc. Instn. Mech. Eng. E. J. Process. Mech. Eng., 206, 111-127. https://doi.org/10.1243/PIME_PROC_1992_206_207_02
  20. Kantar, E. and Anil, O. (2012), "Low velocity impact behavior of concrete beam strengthened with CFRP strip", Steel Compos. Struct., Int. J., 12(3), 207-230. https://doi.org/10.12989/scs.2012.12.3.207
  21. Kharazan, M., Sadr, M.H. and Kiani, M. (2014), "Delamination growth analysis in composite laminates subjected to low velocity impact", Steel Compos. Struct., Int. J., 17(4), 387-403. https://doi.org/10.12989/scs.2014.17.4.387
  22. Lee, E.H. (1940), "The impact of a mass striking a beam", J. Appl. Mech., 7, A129-38.
  23. Li, W., Han, L.H. and Zhao, X.L. (2012), "Axial strength of concrete-filled double skin steel tubular (CFDST) columns with preload on steel tubes", Thin-Wall. Struct., 56, 9-20. https://doi.org/10.1016/j.tws.2012.03.004
  24. Malekzadeh, F.K. (2014), "Higher order impact analysis of sandwich panels with functionally graded flexible cores", Steel Compos. Struct., Int. J., 16(4), 389-415. https://doi.org/10.12989/scs.2014.16.4.389
  25. Malvar, L.J. and Ross, C.A. (1998), "Review of strain rate effects for concrete in tension", ACI Mat. J., 95(6), 735-739.
  26. Malvar, L.J., Crawford, J.E., Wesevich, J.W. and Simons, D. (1997), "A plasticity concrete material model for DYNA3D", Int. J. Impact Eng., 19(9-10), 847-873. https://doi.org/10.1016/S0734-743X(97)00023-7
  27. Mamalis, A.G., Manolakos, D.E., Ioannidis, M.B. and Kostazos, P.K. (2010), "Bending of cylindrical steel tubes: numerical modeling", Int. J. Crashworthiness, 11(1), 37-47. https://doi.org/10.1533/ijcr.2005.0382
  28. Ng, C.S. and Shen, W.Q. (2006), "Effect of lateral impact loads on failure of pressurized pipelines supported by foundation", Proc. Instn. Mech. Eng. E. J. Process Mech. Eng., 220, 193-206. https://doi.org/10.1243/0954408JPME97
  29. Qian, X., Wang, Y., Liew, J.Y.R. and Zhang, M.H. (2015), "A load indentation formulation for cement filled pipe-in-pipe composite structures", Eng. Struct., 92, 84-100. https://doi.org/10.1016/j.engstruct.2015.03.012
  30. Richardson, M.O.W. and Wishear, M.J. (1996), "Review of low-velocity impact properties of composite materials", Compos. A Appl. Sci. Manuf., 27A(12), 1123-1131.
  31. Shen, W.Q. and Shu, D.W. (2002), "A theoretical analysis on the failure of unpressurized and pressurized pipelines", Proc. Instn. Mech. Eng. E. J. Process Mech. Eng., 216(), 151-164.
  32. Sohel, K.M.A. (2008), "Impact performance of steel-concrete-steel sandwich structures", Ph.D. Dissertation; National University of Singapore, Singapore.
  33. Thomas, S.G., Reid, S.R. and Johnson, W. (1976), "Large deformations of thin-walled circular tubes under transverse loading-I An experimental survey of the bending of simply supported tubes under a central load", Int. J. Mech. Sci., 18(6), 325-333. https://doi.org/10.1016/0020-7403(76)90035-7
  34. Uenaka, K. and Kitoh, H. (2011), "Mechanical behavior of concrete filled double skin tubular circular deep beams", Thin-Wall. Struct., 49(2), 256-263. https://doi.org/10.1016/j.tws.2010.10.005
  35. Uenaka, K., Kitoh, H. and Sonoda, K. (2010), "Concrete filled double skin circular stub columns under compression", Thin-Wall. Struct., 48(1), 19-24. https://doi.org/10.1016/j.tws.2009.08.001
  36. Wang, Y. (2015), "Impact performance of cement composite filled pipe in pipe structures", Ph.D. Dissertation; National University of Singapore, Singapore.
  37. Wang, Y., Qian, X., Liew, J.Y.R. and Zhang, M.H. (2014), "Experimental behavior of cement filled pipe-inpipe composite structures under transverse impact", Int. J. Impact Eng., 72, 1-16. https://doi.org/10.1016/j.ijimpeng.2014.05.004
  38. Wang, Y., Qian, X., Liew, J.Y.R. and Zhang, M.H. (2015), "Impact of cement composite filled steel tubes:an experimental, numerical and theoretical treatise", Thin-Wall. Struct., 87, 76-88. https://doi.org/10.1016/j.tws.2014.11.007
  39. Wen, H.M. (1997), "Large plastic deformation of spherical shells under impact by blunt-ended missiles", Int. J. Press. Vessels Pip., 73(2), 147-152. https://doi.org/10.1016/S0308-0161(97)00043-4
  40. Wen, H.M. and Reid, S.R. (1998), "Deformation and perforation of cylindrical shells struck normally by blunt projectiles", Int. J. Press. Vessels Pip., 75(3), 213-219. https://doi.org/10.1016/S0308-0161(98)00024-6
  41. Wierzbicki, T. and Suh, M.S. (1988), "Indentation of tubes under combined loading", Int. J. Mech. Sci., 30(3-4), 229-248. https://doi.org/10.1016/0020-7403(88)90057-4
  42. Xie, Z., Yan, Q. and Li, X. (2014), "Investigation on low velocity impact on a foam core composite sandwich panel", Steel Compos. Struct., Int. J., 17(2), 159-172. https://doi.org/10.12989/scs.2014.17.2.159
  43. Yang, J.L., Lu, G.Y., Yu, T.X. and Reid, S.R. (2009), "Experimental study and numerical simulation of pipe-on-pipe impact", Int. J. Impact Eng., 36(10-11), 1259-1268. https://doi.org/10.1016/j.ijimpeng.2009.05.001
  44. Yang, Y.F., Han, L.H. and Sun, B.H. (2012), "Experimental behavior of partially loaded concrete filled double-skin steel tube (CFDST) sections", J. Constr. Steel Res., 71, 63-73. https://doi.org/10.1016/j.jcsr.2011.11.005
  45. Zhang, Y.F., Zhao, J.H. and Cai, C.S. (2012), "Seismic behavior of ring beam joints between concrete-filled twin steel tubes columns and reinforced concrete beams", Eng. Struct., 39, 1-10. https://doi.org/10.1016/j.engstruct.2012.01.014
  46. Zhao, X.L. and Han, L.H. (2006), "Double skin composite construction", Prog. Struct. Eng. Mater., 8(3), 93-102. https://doi.org/10.1002/pse.216
  47. Zhao, X.L., Tong, L.W. and Wang, X.Y. (2010), "CFDST stub columns subjected to large deformation axial loading", Eng. Struct., 32(3), 692-703. https://doi.org/10.1016/j.engstruct.2009.11.015
  48. Zeinoddini, M., Parke, G.A.R. and Harding, J.E. (2002), "Axially pre-loaded steel tubes subjected to lateral impacts: an experimental study", Int. J. Impact Eng., 27(6), 669-690. https://doi.org/10.1016/S0734-743X(01)00157-9
  49. Zeinoddini, M., Harding, J.E. and Parke, G.A.R. (2008a), "Axially pre-loaded steel tubes subjected to lateral impacts: a numerical simulation", Int. J. Impact Eng., 35(11), 1267-1279. https://doi.org/10.1016/j.ijimpeng.2007.08.002
  50. Zeinoddini, M., Parke, G.A.R. and Harding, J.E. (2008b), "Interface forces in laterally impacted steel tubes", Proc. Soc. Exp. Mech., 48(3), 265-280.
  51. Zeinoddini, M., Arabzadeh, H., Ezzati, M. and Parke, G.A.R. (2013), "Response of submarine pipelines to impacts from dropped objects: bed flexibility effects", Int. J. Impact Eng., 62, 129-141. https://doi.org/10.1016/j.ijimpeng.2013.06.010

Cited by

  1. Behavior of a steel bridge with large caisson foundations under earthquake and tsunami actions vol.31, pp.6, 2016, https://doi.org/10.12989/scs.2019.31.6.575
  2. A Case Study of Floating Offshore Super-Long Steel Pipeline Combing with Field Monitoring vol.11, pp.21, 2016, https://doi.org/10.3390/app112110186