• Title/Summary/Keyword: Transport temperature

Search Result 1,512, Processing Time 0.027 seconds

Effects of Electrostatic Discharge Stress on Current-Voltage and Reverse Recovery Time of Fast Power Diode

  • Bouangeune, Daoheung;Choi, Sang-Sik;Cho, Deok-Ho;Shim, Kyu-Hwan;Chang, Sung-Yong;Leem, See-Jong;Choi, Chel-Jong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.4
    • /
    • pp.495-502
    • /
    • 2014
  • Fast recovery diodes (FRDs) were developed using the $p^{{+}{+}}/n^-/n^{{+}{+}}$ epitaxial layers grown by low temperature epitaxy technology. We investigated the effect of electrostatic discharge (ESD) stresses on their electrical and switching properties using current-voltage (I-V) and reverse recovery time analyses. The FRDs presented a high breakdown voltage, >450 V, and a low reverse leakage current, < $10^{-9}$ A. From the temperature dependence of thermal activation energy, the reverse leakage current was dominated by thermal generation-recombination and diffusion, respectively, at low and high temperature regions. By virtue of the abrupt junction and the Pt drive-in for the controlling of carrier lifetime, the soft reverse recovery behavior could be obtained along with a well-controlled reverse recovery time of 21.12 ns. The FRDs exhibited excellent ESD robustness with negligible degradations in the I-V and the reverse recovery characteristics up to ${\pm}5.5$ kV of HBM and ${\pm}3.5$ kV of IEC61000-4-2 shocks. Likewise, transmission line pulse (TLP) analysis reveals that the FRDs can handle the maximum peak pulse current, $I_{pp,max}$, up to 30 A in the forward mode and down to - 24 A in the reverse mode. The robust ESD property can improve the long term reliability of various power applications such as automobile and switching mode power supply.

Solvation of a Small Metal-Binding Peptide in Room-Temperature Ionic Liquids

  • Shim, Youngseon;Kim, Hyung J.;Jung, YounJoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3601-3606
    • /
    • 2012
  • Structural properties of a small hexapeptide molecule modeled after metal-binding siderochrome immersed in a room-temperature ionic liquid (RTIL) are studied via molecular dynamics simulations. We consider two different RTILs, each of which is made up of the same cationic species, 1-butyl-3-methylimidazolium ($BMI^+$), but different anions, hexafluorophosphate ($PF_6{^-}$) and chloride ($Cl^-$). We investigate how anionic properties such as hydrophobicity/hydrophilicity or hydrogen bonding capability affect the stabilization of the peptide in RTILs. To examine the effect of peptide-RTIL electrostatic interactions on solvation, we also consider a hypothetical solvent $BMI^0Cl^0$, a non-ionic counter-part of $BMI^+Cl^-$. For reference, we investigate solvation structures in common polar solvents, water and dimethylsulfoxide (DMSO). Comparison of $BMI^+Cl^-$ and $BMI^0Cl^0$ shows that electrostatic interactions of the peptide and RTIL play a significant role in the conformational fluctuation of the peptide. For example, strong electrostatic interactions between the two favor an extended conformation of the peptide by reducing its structural fluctuations. The hydrophobicity/hydrophilicity of RTIL anions also exerts a notable influence; specifically, structural fluctuations of the peptide become reduced in more hydrophilic $BMI^+Cl^-$, compared with those in more hydrophobic $BMI^+PF_6{^-}$. This is ascribed to the good hydrogen-bond accepting power of chloride anions, which enables them to bind strongly to hydroxyl groups of the peptide and to stabilize its structure. Transport properties of the peptide are examined briefly. Translations of the peptide significantly slow down in highly viscous RTILs.

A Study on the Thermal-Hydraulic Characteristics of Molten Salt in Minichannels of an Intermediate Heat Exchanger for a Very High Temperature Reactor (VHTR) (초고온원자로 중간열교환기 미니챈널에서의 Molten Salt 열수력 특성 연구)

  • Jeong, Hui-Seong;Hwang, In-Seon;Bang, Kwang-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.12
    • /
    • pp.1093-1099
    • /
    • 2010
  • For Very High Temperature Reactors (VHTR), the designs of the Intermediate Heat Transport Loop (IHTL) and the Intermediate Heat Exchanger (IHX) are particularly difficult because of the high-temperature operation (up to $950^{\circ}C$). In this study, Flinak molten salt, a eutectic mixture of LiF, NaF, and KF (46.5:11.5:42.0 mole %) is considered as the heat transporting fluid in the IHTL. To evaluate the flow and heat transfer performance of the Flinak molten salt in small channels with hydraulic diameters in the millimeter range, a double-pipe heat exchanger was constructed using small-diameter tubes for the heat exchange between the Flinak and the gas flow. The experimental data showed that, for laminar Flinak flow, the measured friction factors were close to the 64/Re curve and the Nusselt numbers were generally between 3.66 and 4.36.

Numerical Investigation of the Effect of IR Heating on Drying Mechanism in a Tumble Dryer (열복사를 적용한 드럼 건조기의 건조 메커니즘 분석 및 성능 예측에 관한 연구)

  • Choi, Chul-Jin;Jang, Jung-Hyun;Kim, Chong-Min;Kim, Man-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.3
    • /
    • pp.219-228
    • /
    • 2010
  • A two-dimensional mathematical model was developed to predict the temperature and moisture-content profiles of a tumble dryer during infrared drying. The model is based on the movements of liquid water and moisture in the object and on the fluid and heat transfer in the drying air. The model was solved by the finite volume analysis for the fluid, temperature, and radiation intensity fields. After deriving the governing equations and developing the two-dimensional tumble dryer models, numerical investigations were carried out to examine the effects of various parameters such as the heater temperature and the heating patterns on the drying mechanism of the tumble dryer. All the results show that the drying time can be reduced by using the IR heater.

HI concentration by EED for the HI decomposition in IS process (IS 프로세스의 HI 분해반응공정을 위한 전해 - 전기투석(EED) HI 농축)

  • Hong, Seong-Dae;Kim, Jeong-Geun;Lee, Sang-Ho;Choi, Sang-Il;Bae, Ki-Kwang;Hwang, Gab-Jin
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.2
    • /
    • pp.212-217
    • /
    • 2006
  • An experimental study on Electro-electrodialysis (EED) for IS (Iodine-Sulfur) process which is well known as hydrogen production system was carried out for the HI concentration from HIx (HI: $H_2O$ : $I_2$ = 1 : 5 : 1) solution. The polymer electrolyte membrane and the activated carbon cloth were adopted as a cation exchange membrane and electrode, respectively. In order to evaluate the temperature effect about HI concentration in fixed molar ratio, three case of temperature were selected to $60^{\circ}C$, $90^{\circ}C$ and $120^{\circ}C$. The electro-osmosis coefficient and transport number of proton have been changed from 1.95 to 1.21 (mol/Faraday) and 0.91 to 0.76, respectively as temperature increase from $60^{\circ}C$ to $120^{\circ}C$. It can be realized that the HI mole fraction in final stage of EED experiments already over the quasi-azeotrope composition.

AC Loss Characteristics of a Single-layered Cylindrical High Temperature Superconductor (단층원통형 고온초전도도체의 교류손실 특성)

  • Ma, Yong-Hu;Li, Zhu-Yong;Ryu, Kyung-Woo;Sohn, Song-Ho;Hwang, Si-Dol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.7
    • /
    • pp.626-630
    • /
    • 2007
  • The AC loss is an important issue in the design of the high temperature superconductor (HTS) power cables and fault current limiters. In these applications, a cylindrical HTS conductor is often used. In commercialization of these apparatuses, AC loss is a critical factor but not elucidated completely because of complexities in its measurement, e.g. non-uniform current distribution and phase difference between currents flowing in an individual HTS tape. We have prepared two cylindrical conductors composed of a Bi-2223 tape with different critical current density. In this paper, the AC loss characteristics of the conductors have been experimentally investigated and numerically analyzed. The result show that the measured losses for two conductors are not dependent on both arrangements and contact positions of a voltage lead. This implies that most of loss flux is only in the conductors. The loss for the Bi-2223 conductor with low critical current density is in good agreement with the calculated loss from Monoblock model, whereas the loss measured for the Bi-2223 conductor with high critical current density doesn't coincide with the loss calculated from the Monoblock model. The measured loss is also different from numerically calculated one based on the polygon model especially in low transport current.

Tracking of Internal Waves Observed by SAR in the Time Series of Temperature Profile Data (시계열 등온선 자료에서의 SAR로 관측된 내부파의 추적 연구)

  • Kim, Tae-Rim
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.2
    • /
    • pp.155-163
    • /
    • 2009
  • An abundance of internal waves is observed by SAR in the Yellow Sea during summer. They are small scaled internal waves and are not relatively studied well compared to the ones in the East/South China Sea. These internal waves should be considered in the study of physio-biological properties of the Yellow Sea because the mixing of the stratified surface water caused by internal waves during summer is important for ocean biological environment, and they also affect the sediment transport and acoustic signal transmission in the continental shelf region. To understand the characteristics of internal waves, it is important to get the spatio-temporal information of internal waves simultaneously by executing in-situ measurements as well as the SAR observation. This study tracks the internal waves observed by SAR in the time series of temperature profile data by analyzing simultaneously acquired in-situ measurement data and RADARSAT SAR image on 29 May 2002.

The Monitoring System of Temperature and Humidity on Vehicle for HACCP (HACCP을 위한 차량용 온습도 모니터링 시스템)

  • Kim, Joon-bae;Kang, Moon-sung
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.2
    • /
    • pp.168-172
    • /
    • 2018
  • HACCP is scientific Sanitary control system to ensure food safety with autonomous, systematic and effective way by analysing hazard element that can be occurred in each steps until an end consumer takes food including raw material status, manufacturing, processing, storing, distributing, cooking and specifying the critical control point. In this paper, the temperature and humidity are measured during the transport of food, the stage of its distribution, to ensure systematic and effective management of HACCP, and we designed a monitoring terminal that uses this information to send it to servers periodically and a firmware that implements it. We have confirmed that the data transmitted by the terminal, including the information measured in sub-net, was well stored on the server and the response from the server is well received by the terminal. It is expected to be used for the management of food history, data tracking and statistical data in the future. This system is also considered to be an applicable system for group cafeteria such as schools or workplaces and logistics warehouses for raw materials or food storage and so on.

p-type CuI Thin-Film Transistors through Chemical Vapor Deposition Process (Chemical Vapor Deposition 공정으로 제작한 CuI p-type 박막 트랜지스터)

  • Seungmin Lee;Seong Cheol Jang;Ji-Min Park;Soon-Gil Yoon;Hyun-Suk Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.11
    • /
    • pp.491-496
    • /
    • 2023
  • As the demand for p-type semiconductors increases, much effort is being put into developing new p-type materials. This demand has led to the development of novel new p-type semiconductors that go beyond existing p-type semiconductors. Copper iodide (CuI) has recently received much attention due to its wide band gap, excellent optical and electrical properties, and low temperature synthesis. However, there are limits to its use as a semiconductor material for thin film transistor devices due to the uncontrolled generation of copper vacancies and excessive hole doping. In this work, p-type CuI semiconductors were fabricated using the chemical vapor deposition (CVD) process for thin-film transistor (TFT) applications. The vacuum process has advantages over conventional solution processes, including conformal coating, large area uniformity, easy thickness control and so on. CuI thin films were fabricated at various deposition temperatures from 150 to 250 ℃ The surface roughness root mean square (RMS) value, which is related to carrier transport, decreases with increasing deposition temperature. Hall effect measurements showed that all fabricated CuI films had p-type behavior and that the Hall mobility decreased with increasing deposition temperature. The CuI TFTs showed no clear on/off because of the high concentration of carriers. By adopting a Zn capping layer, carrier concentrations decreased, leading to clear on and off behavior. Finally, stability tests of the PBS and NBS showed a threshold voltage shift within ±1 V.

The efficient data-driven solution to nonlinear continuum thermo-mechanics behavior of structural concrete panel reinforced by nanocomposites: Development of building construction in engineering

  • Hengbin Zheng;Wenjun Dai;Zeyu Wang;Adham E. Ragab
    • Advances in nano research
    • /
    • v.16 no.3
    • /
    • pp.231-249
    • /
    • 2024
  • When the amplitude of the vibrations is equivalent to that clearance, the vibrations for small amplitudes will really be significantly nonlinear. Nonlinearities will not be significant for amplitudes that are rather modest. Finally, nonlinearities will become crucial once again for big amplitudes. Therefore, the concrete panel system may experience a big amplitude in this work as a result of the high temperature. Based on the 3D modeling of the shell theory, the current work shows the influences of the von Kármán strain-displacement kinematic nonlinearity on the constitutive laws of the structure. The system's governing Equations in the nonlinear form are solved using Kronecker and Hadamard products, the discretization of Equations on the space domain, and Duffing-type Equations. Thermo-elasticity Equations. are used to represent the system's temperature. The harmonic solution technique for the displacement domain and the multiple-scale approach for the time domain are both covered in the section on solution procedures for solving nonlinear Equations. An effective data-driven solution is often utilized to predict how different systems would behave. The number of hidden layers and the learning rate are two hyperparameters for the network that are often chosen manually when required. Additionally, the data-driven method is offered for addressing the nonlinear vibration issue in order to reduce the computing cost of the current study. The conclusions of the present study may be validated by contrasting them with those of data-driven solutions and other published articles. The findings show that certain physical and geometrical characteristics have a significant effect on the existing concrete panel structure's susceptibility to temperature change and GPL weight fraction. For building construction industries, several useful recommendations for improving the thermo-mechanics' behavior of structural concrete panels are presented.