DOI QR코드

DOI QR Code

초고온원자로 중간열교환기 미니챈널에서의 Molten Salt 열수력 특성 연구

A Study on the Thermal-Hydraulic Characteristics of Molten Salt in Minichannels of an Intermediate Heat Exchanger for a Very High Temperature Reactor (VHTR)

  • 정희성 (한국해양대학교 냉동공조공학과) ;
  • 황인선 (한국해양대학교 냉동공조공학과) ;
  • 방광현 (한국해양대학교 기계정보공학부)
  • Jeong, Hui-Seong (Dept. of Refrigeration and Air-Conditioning Engineering, Korea Maritime Univ.) ;
  • Hwang, In-Seon (Dept. of Refrigeration and Air-Conditioning Engineering, Korea Maritime Univ.) ;
  • Bang, Kwang-Hyun (Dept. of Mechanical Engineering, Korea Maritime Univ.)
  • 투고 : 2010.07.05
  • 심사 : 2010.09.25
  • 발행 : 2010.12.01

초록

초고온원자로(VHTR) 설계에 있어 중간열수송루프(IHTL) 및 중간열교환기(IHX) 설계는 고온의 운전조건($950^{\circ}C$ 이상)으로 인하여 공학적으로 어려운 과제 중 하나로 알려져있다. 본 연구에서는 LiF, NaF 및 KF(46.5:11.5:42.0 mole %)의 공융혼합물인 Flinak molten salt 를 IHTL 의 열수송매체로 고려하였다. Flinak molten salt 의 세관에서의 열수력 특성을 평가하기 위하여 직경이 1.4 mm 인 원형관을 이용하여 고온의 가스와 Flinak 을 열교환할 수 있는 이중관식 열교환기를 구성하여 실험하였다. 실험 결과 층류유동에서 측정된 Flinak 의 마찰계수는 이론식인 64/Re 에 근접하였고 Nusselt 수는 일반적으로 3.66 에서 4.36 범위에 들었다.

For Very High Temperature Reactors (VHTR), the designs of the Intermediate Heat Transport Loop (IHTL) and the Intermediate Heat Exchanger (IHX) are particularly difficult because of the high-temperature operation (up to $950^{\circ}C$). In this study, Flinak molten salt, a eutectic mixture of LiF, NaF, and KF (46.5:11.5:42.0 mole %) is considered as the heat transporting fluid in the IHTL. To evaluate the flow and heat transfer performance of the Flinak molten salt in small channels with hydraulic diameters in the millimeter range, a double-pipe heat exchanger was constructed using small-diameter tubes for the heat exchange between the Flinak and the gas flow. The experimental data showed that, for laminar Flinak flow, the measured friction factors were close to the 64/Re curve and the Nusselt numbers were generally between 3.66 and 4.36.

키워드

참고문헌

  1. Peterson, P. F., Zhao, H. and Fukuda, G., 2005, “Functional Requirements Overview for a 50 MW(t) Liquid-Salt Intermediate Loop for NGNP,” UC Berkeley Report UCBTH-05-007.
  2. Forsberg, C. W. et al., 2008, “Safety Related Physical Phenomena for Coupled High-Temperature Reactors and Hydrogen Production Facilities,” Proc. 4th Int. Topical Meeting on High Temperature Reactor Technology (HTR2008), Washington, DC, USA.
  3. Zwaan, S. J. et al., 2007, “Static Design of a Liquid- Salt-Cooled Pebble Bed Reactor (LSPBR),” Annals of Nuclear Energy, Vol. 34, pp. 83-92. https://doi.org/10.1016/j.anucene.2006.11.008
  4. Williams, D. F., Toth, L. M. and Clarno, K. T., 2006, “Assessment of Candidate Molten Salt Coolants for the Advanced High-Temperature Reactor,” Oak Ridge National Laboratory Report ORNL/TM-2006/12.
  5. Bang, K.H. and B.W. Lee, 2010, Korea Patent No. 10-0937227.
  6. Cohen, S. I. and Jones, T. N., 1957, "Viscosity Measurements on Molten Fluoride Mixtures," ORNL- 2278, Oak Ridge National Laboratory, Oak Ridge, TN.
  7. Torklep, K. and Oye, H. A., 1980, "Viscosity of Eutectic LiF-NaF-KF," J. Chem. Eng. Data 25, p. 16. https://doi.org/10.1021/je60084a007
  8. Kakac, S. and Liu, H., Heat Exchangers: Selection, Rating and Thermal Design, CRC Press.