• Title/Summary/Keyword: Transcriptional factor

Search Result 502, Processing Time 0.023 seconds

Functional Analysis of the Heptasequence SPTSPTY in the Transcriptional Activation Domain of Rat Nuclear Factor 1-A

  • Hwang, Jung-Su;Son, Kyung-No;Rho, Hyune-Mo;Kim, Ji-Young
    • BMB Reports
    • /
    • v.32 no.5
    • /
    • pp.468-473
    • /
    • 1999
  • Nuclear Factor 1 (NF1) proteins are a family of transcriptional factors consisting of four different types: NF1-A, -B, -C, and -X. Some NF1 transcription factors contain a heptasequence motif, SPTSPSY, which is found as a repeat sequence in the carboxy terminal domain (CTD) of the largest subunit of RNA polymerase II. A similar heptasequence, SPTSPTY, is contained in rat liver NF1-A at a position between residues 469 and 475. In order to investigate the roles of the individual amino acids of the heptasequence of rat liver NF1-A in transcriptional activation, we systematically substituted single and multiple amino acid residues with alanine residue(s) and evaluated the transcriptional activities of the mutated NF1-A. Substitution of a single amino acid reduced transcriptional activity by 10 to 30%, except for the proline residue at position 473, whose substitution with alanine did not affect transcriptional activity. However, changes of all four serine and threonine residues to alanine or of the tyrosine residue along with the serine residue at position 469 to alanine reduced the activity to almost background levels. Our results indicate that multiple serine and threonine residues, rather than a single residue, may be involved in the modulation of the transcriptional activities of the factor. Involvement of the tyrosine residue is also implicated.

  • PDF

MiT Family Transcriptional Factors in Immune Cell Functions

  • Kim, Seongryong;Song, Hyun-Sup;Yu, Jihyun;Kim, You-Me
    • Molecules and Cells
    • /
    • v.44 no.5
    • /
    • pp.342-355
    • /
    • 2021
  • The microphthalmia-associated transcription factor family (MiT family) proteins are evolutionarily conserved transcription factors that perform many essential biological functions. In mammals, the MiT family consists of MITF (microphthalmia-associated transcription factor or melanocyte-inducing transcription factor), TFEB (transcription factor EB), TFE3 (transcription factor E3), and TFEC (transcription factor EC). These transcriptional factors belong to the basic helix-loop-helix-leucine zipper (bHLH-LZ) transcription factor family and bind the E-box DNA motifs in the promoter regions of target genes to enhance transcription. The best studied functions of MiT proteins include lysosome biogenesis and autophagy induction. In addition, they modulate cellular metabolism, mitochondria dynamics, and various stress responses. The control of nuclear localization via phosphorylation and dephosphorylation serves as the primary regulatory mechanism for MiT family proteins, and several kinases and phosphatases have been identified to directly determine the transcriptional activities of MiT proteins. In different immune cell types, each MiT family member is shown to play distinct or redundant roles and we expect that there is far more to learn about their functions and regulatory mechanisms in host defense and inflammatory responses.

Post-Translational Regulations of Transcriptional Activity of RUNX2

  • Kim, Hyun-Jung;Kim, Woo-Jin;Ryoo, Hyun-Mo
    • Molecules and Cells
    • /
    • v.43 no.2
    • /
    • pp.160-167
    • /
    • 2020
  • Runt-related transcription factor 2 (RUNX2) is a key transcription factor for bone formation and osteoblast differentiation. Various signaling pathways and mechanisms that regulate the expression and transcriptional activity of RUNX2 have been thoroughly investigated since the involvement of RUNX2 was first reported in bone formation. As the regulation of Runx2 expression by extracellular signals has recently been reviewed, this review focuses on the regulation of post-translational RUNX2 activity. Transcriptional activity of RUNX2 is regulated at the post-translational level by various enzymes including kinases, acetyl transferases, deacetylases, ubiquitin E3 ligases, and prolyl isomerases. We describe a sequential and linear causality between post-translational modifications of RUNX2 by these enzymes. RUNX2 is one of the most important osteogenic transcription factors; however, it is not a suitable drug target. Here, we suggest enzymes that directly regulate the stability and/or transcriptional activity of RUNX2 at a post-translational level as effective drug targets for treating bone diseases.

Inferring Transcriptional Interactions and Regulator Activities from Experimental Data

  • Wang, Rui-Sheng;Zhang, Xiang-Sun;Chen, Luonan
    • Molecules and Cells
    • /
    • v.24 no.3
    • /
    • pp.307-315
    • /
    • 2007
  • Gene regulation is a fundamental process in biological systems, where transcription factors (TFs) play crucial roles. Inferring transcriptional interactions between TFs and their target genes has utmost importance for understanding the complex regulatory mechanisms in cellular systems. On one hand, with the rapid progress of various high-throughput experiment techniques, more and more biological data become available, which makes it possible to quantitatively study gene regulation in a systematic manner. On the other hand, transcription regulation is a complex biological process mediated by many events such as post-translational modifications, degradation, and competitive binding of multiple TFs. In this review, with a particular emphasis on computational methods, we report the recent advances of the research topics related to transcriptional regulatory networks, including how to infer transcriptional interactions, reveal combinatorial regulation mechanisms, and reconstruct TF activity profiles.

Quercetin induces dual specificity phosphatase 5 via serum response factor

  • Kanokkan Boonruang;Ilju Kim;Chaeyoung Kwag;Junsun Ryu;Seung Joon Baek
    • BMB Reports
    • /
    • v.56 no.9
    • /
    • pp.508-513
    • /
    • 2023
  • The phytochemical quercetin has gained attention for its anti-inflammatory and anti-tumorigenic properties in various types of cancer. Tumorigenesis involves the aberrant regulation of kinase/phosphatase, highlighting the importance of maintaining homeostasis. Dual Specificity Phosphatase (DUSP) plays a crucial role in controlling the phosphorylation of ERK. The current study aimed to clone the DUSP5 promoter, and investigate its transcriptional activity in the presence of quercetin. The results revealed that quercetin-induced DUSP5 expression is associated with the serum response factor (SRF) binding site located in the DUSP5 promoter. The deletion of this site abolished the luciferase activity induced by quercetin, indicating its vital role in quercetin-induced DUSP5 expression. SRF protein is a transcription factor that potentially contributes to quercetin-induced DUSP5 expression at the transcriptional level. Additionally, quercetin enhanced SRF binding activity without changing its expression. These findings provide evidence of how quercetin affects anti-cancer activity in colorectal tumorigenesis by inducing SRF transcription factor activity, thereby increasing DUSP5 expression at the transcriptional level. This study highlights the importance of investigating the molecular mechanisms underlying the anti-cancer properties of quercetin, and suggests its potential use in cancer therapy.

Some Motifs Were Important for Myostatin Transcriptional Regulation in Sheep (Ovis aries)

  • Du, Rong;An, Xiao-Rong;Chen, Yong-Fu;Qin, Jian
    • BMB Reports
    • /
    • v.40 no.4
    • /
    • pp.547-553
    • /
    • 2007
  • Many motifs along the 1.2 kb myostatin promoter (MSTNpro) in sheep have been found by the MatInspecter program in our recent study. To further verify the role of the motifs and better understand the transcriptional regulation mechanism of the myostatin gene in sheep, the reporter gene EGFP (enhanced green fluorescent protein) was selected and the wild-type (W) vector MSTNPro$^W$-EGFP or motif-mutational (M) vector MSTNPro$^M$-EGFP were constructed. The transcriptional regulation activities were analyzed by detecting the fluorescence strength of EGFP in C2C12 myoblasts transfected with the vectors. The results showed that E-box (E) 3, E4, E5 and E7, particularly E3, E5 and E7, had important effects on the activity of the 1.2 kb sheep myostatin promoter. In addition, we also detected several other important motifs such as MTBF (muscle-specific Mt binding factor), MEF2 (myocyte enhancer factor 2), GRE (glucocorticoid response elements) and PRE (progesterone response elements) along the sheep myostatin promoter by the mutational analysis.

Identification and Characterization of LHX8 DNA Binding Elements

  • Park, Miree;Jeon, Sanghyun;Jeong, Ji-Hye;Park, Miseon;Lee, Dong-Ryul;Yoon, Tae Ki;Choi, Dong Hee;Choi, Youngsok
    • Development and Reproduction
    • /
    • v.16 no.4
    • /
    • pp.379-384
    • /
    • 2012
  • Lhx8 (LIM homeobox 8) gene encodes a LIM homeodomain transcriptional regulator that is preferentially expressed in germ cells and critical for mammalian folliculogenesis. However, Lhx8 DNA binding sequences are not characterized yet. We aimed to identify and characterize a cis-acting sequence of germ-cell specific transcriptional factor, Lhx8. To identify Lhx8 DNA binding element, Cyclic Amplification of Sequence Target (CAST) Analysis was performed. Electrophoretic Mobility Shift Assay (EMSA) was processed for the binding specificity of Lhx8. Luciferase assay was for the transcriptional activity of Lhx8 through identified DNA binding site. We identified a putative cis-acting sequence, TGATTG as Lhx8 DNA binding element (LBE). In addition, Lhx8 binds to the LBE with high affinity and augments transcriptional activity of luciferase reporter driven by artificial promoter containing the Lhx8 binding element. These findings indicate that Lhx8 directly regulates the transcription of genes containing Lhx8 binding element in oocytes during early folliculogenesis.

Transcriptional Regulation of the Glial Cell-Specific JC Virus by p53

  • Kim, Hee-Sun;Woo, Moom-Sook
    • Archives of Pharmacal Research
    • /
    • v.25 no.2
    • /
    • pp.208-213
    • /
    • 2002
  • The human polyomavirus JC virus is the etiologic agent of progressive multifocal leukoencephalopathy (PML). As the JC virus early promoter directs cell-specific expression of the viral replication factor large T antigen, transcriptional regulation constitutes a major mechanism of glial tropism in PML. It has been demonstrated that SV4O or JC virus large T antigen interacts with p53 protein and regulates many viral and cellular genes. In this study we founts that p53 represses the JC virus early promoter in both glial and nonglial cells To identify the cis-regulatory elements responsible for p53-mediated repression, deletional and site-directed mutational analyses were performed . Deletion of the enhancer region diminished p53-mediated transcriptional repression. However, point mutations of several transcription factor binding sites in the basal promoter region did not produce any significant changes. In support of this observation, when the enhancer was fused to a heterologous promoter, p53 red reduced the promoter activity about three fold. These results indicate that the enhancer region is important for tole repression of JC virus transcription by p53. Furthermore, coexpression of JC virus T antigen with a p53 protein abolished p53-mediated repression of the JC virus early promoter in non-glial cells, but not in glial cells. This finding suggests that T antigen interacts with p53 and regulates JC virus transcription in a cell-specific manner.

Identification of the σ70-Dependent Promoter Controlling Expression of the ansPAB Operon of the Nitrogen-Fixing Bacterium Rhizobium etli

  • Angelica, Moreno-Enriquez;Zahaed, Evangelista-Martinez;Luis, Servin-Gonzalez;Maria Elena, Flores-Carrasco
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1241-1245
    • /
    • 2015
  • The aim of the present work was to examine the putative promoter region of the operon ansPAB and to determine the general elements required for the regulation of transcriptional activity. The transcriptional start site of the ansPAB promoter was determined by using highresolution S1-nuclease mapping. Sequence analysis of this region showed -10 and -35 elements, which were consistent with consensus sequences for R. etli promoters that are recognized by the major form of RNA polymerase containing the σ70 transcription factor. Mutation studies affecting several regions located upstream of the transcriptional start site confirmed the importance of these elements on transcriptional expression.

Cadmium-Induced Gene Expression is Regulated by MTF-1, a Key Metal- Responsive Transcription Factor

  • Gupta, Ronojoy-Sen;Ahnn, Joohong
    • Animal cells and systems
    • /
    • v.7 no.3
    • /
    • pp.173-186
    • /
    • 2003
  • The transition metal cadmium is a serious occupational and environmental toxin. To inhibit cadmium-induced damage, cells respond by increasing the expression of genes that encode stress-responsive proteins. The metal-regulatory transcription factor 1 (MTF-1) is a key regulator of heavy-metal induced transcription of metallothionein-I and II and other genes in mammals and other metazoans. Transcriptional activation of genes by MTF-1 is mediated through binding to metal-responsive elements in the target gene promoters. Phosphorylation of MTF-1 plays a critical role in the cadmium-inducible transcriptional activation of metallothionein and other responses. Studies using inhibitors indicate that multiple kinases and signal transduction cascades, including those mediated by protein kinase C, tyrosine kinase and casein kinase II, are essential for cadmium-mediated transcriptional activation. In addition, calcium signaling is also involved in regulating metal-activated transcription. In several species, cadmium induces heat shock genes. Recently much progress has been made in elucidating the cellular machinery that regulates this metal-inducible gene expression. This review summarizes these recent advances in understanding the role of some known cadmium-responsive genes and the molecular mechanisms that activate metal-responsive transcription factor, MTF-1.