DOI QR코드

DOI QR Code

Identification of the σ70-Dependent Promoter Controlling Expression of the ansPAB Operon of the Nitrogen-Fixing Bacterium Rhizobium etli

  • Angelica, Moreno-Enriquez (Escuela de Medicina, Universidad Marista de Merida) ;
  • Zahaed, Evangelista-Martinez (Centro de Investigacion y Asistencia en Tecnologia y Diseno del Estado de Jalisco AC, Unidad Sureste, Parque Cientifico de Yucatan) ;
  • Luis, Servin-Gonzalez (Departamento de Biologia Molecular y Biotecnologia, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, D.F.) ;
  • Maria Elena, Flores-Carrasco (Departamento de Biologia Molecular y Biotecnologia, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, D.F.)
  • Received : 2015.03.04
  • Accepted : 2015.04.02
  • Published : 2015.09.28

Abstract

The aim of the present work was to examine the putative promoter region of the operon ansPAB and to determine the general elements required for the regulation of transcriptional activity. The transcriptional start site of the ansPAB promoter was determined by using highresolution S1-nuclease mapping. Sequence analysis of this region showed -10 and -35 elements, which were consistent with consensus sequences for R. etli promoters that are recognized by the major form of RNA polymerase containing the σ70 transcription factor. Mutation studies affecting several regions located upstream of the transcriptional start site confirmed the importance of these elements on transcriptional expression.

Keywords

References

  1. Benhassine T, Fauvart M, Vanderleyden J, Michiels J. 2007. Interaction of an IHF-like protein with the Rhizobium etli nifA promoter. FEMS Microbiol. Lett. 271: 20-26. https://doi.org/10.1111/j.1574-6968.2007.00699.x
  2. Bringhurst RM, Gage DJ. 2002. Control of inducer accumulation plays a key role in succinate-mediated catabolite repression in Sinorhizobium meliloti. J. Bacteriol. 184: 5385-5392. https://doi.org/10.1128/JB.184.19.5385-5392.2002
  3. Browning DF, Busby SJW. 2004. The regulation of bacterial transcription initiation. Nat. Rev. Microbiol. 2: 1-9. https://doi.org/10.1038/nrmicro787
  4. Buck M, Gallegos MT, Studholme DJ, Guo Y, Gralla JD. 2000. The bacterial enhancer-dependent σ54N) transcription factor. J. Bacteriol. 182: 4129-4136. https://doi.org/10.1128/JB.182.15.4129-4136.2000
  5. Dixon R, Kahn D. 1994. Genetic regulation of nitrogen fixation. Nat. Rev. Microbiol. 2: 621-631. https://doi.org/10.1038/nrmicro954
  6. Fauvart M, Michiels J. 2008. Rhizobial secreted proteins as determinants of host specificity in the rhizobium-legume symbiosis. FEMS Microbiol. Lett. 285: 1-9. https://doi.org/10.1111/j.1574-6968.2008.01254.x
  7. Girard L, Brom S, Dávalos A, López O, Soberón M, Romero D. 2000. Differential regulation of fixN-reiterated genes in Rhizobium etli by a novel fixL-fixK cascade. Mol. Plant Microbe Interact. 13: 1283-1292. https://doi.org/10.1094/MPMI.2000.13.12.1283
  8. Huerta-Zepeda A, Durán S, Du Pont G, Calderón, J. 1996. Asparagine degradation in Rhizobium etli. Microbiology 142: 1071-1076. https://doi.org/10.1099/13500872-142-5-1071
  9. Huerta-Zepeda A, Ortuño L, Du Pont G, Durán S, Lloret A, Merchant-Larios H, Calderón J. 1997. Isolation and characterization of Rhizobium etli mutants altered in degradation of asparagine. J. Bacteriol. 179: 2068-2072. https://doi.org/10.1128/jb.179.6.2068-2072.1997
  10. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA. 2000. Practical Streptomyces Genetics. The John Innes Foundation, Norwich.
  11. Martínez-Salazar J, Sandoval-Calderón M, Guo X, Castillo-Ramírez S, Reyes A, Loza MG, et al. 2009. The Rhizobium etli RpoH1 and RpoH2 sigma factors are involved in different stress responses. Microbiology 155: 386-397. https://doi.org/10.1099/mic.0.021428-0
  12. Masson-Boivin C, Giraud E, Perret X, Batut J. 2009. Establishing nitrogen-fixing symbiosis with legumes: how many Rhizobium recipes? Trends Microbiol. 17: 458-466. https://doi.org/10.1016/j.tim.2009.07.004
  13. Meneses N, Mendoza-Hernández G, Encarnación S. 2010. The extracellular proteome of Rhizobium etli CE3 in exponential and stationary growth phase. Proteome Sci. 8: 51. https://doi.org/10.1186/1477-5956-8-51
  14. Noel KD, Sánchez F, Fernández L, Leemans J, Cevallos MA. 1984. Rhizobium phaseoli symbiotic mutants with transposon Tn5 insertions. J. Bacteriol. 158: 148-155
  15. Ortuño-Olea L, Durán-Vargas S. 2000. The L-asparagine operon of Rhizobium etli contains a gene encoding an atypical asparaginase. FEMS Microbiol. Lett. 189: 177-182. https://doi.org/10.1016/S0378-1097(00)00275-5
  16. Paget MS, Helmann JD. 2003. The sigma70 family of sigma factors. Genome Biol. 24: 203. https://doi.org/10.1186/gb-2003-4-1-203
  17. Patriarca EJ, Tate R, Laccarino M. 2002. Key role of bacterial NH4+ metabolism in Rhizobium-plant simbiosis. Microbiol. Mol. Biol. Rev. 66: 203-222. https://doi.org/10.1128/MMBR.66.2.203-222.2002
  18. Prell J, Poole P. 2006. Metabolic changes of rhizobia in legume nodules. Trends Microbiol. 14: 161-168. https://doi.org/10.1016/j.tim.2006.02.005
  19. Ramímez-Romero MA, Masulis I, Cevallos MA, González V, Dávila G. 2006. The Rhizobium etli σ70 (SigA) factor recognizes a lax consensus promoter. Nucleic Acids Res. 34: 1470-1480. https://doi.org/10.1093/nar/gkl023
  20. Rigali S, Derouaux A, Giannotta F, Dusart J. 2002. Subdivision of the helix-turn-helix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies. J. Biol. Chem. 277: 12507-12515. https://doi.org/10.1074/jbc.M110968200
  21. Röhm M, Werner D. 1985. Regulation of the β-ketoadipate pathway in Rhizobium japonicum and bacteroids by succinate. Arch. Microbiol. 140: 375-379. https://doi.org/10.1007/BF00446981
  22. Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9: 671-675. https://doi.org/10.1038/nmeth.2089
  23. Servín-González L, Jensen MR, White J, Bibb M. 1994. Transcriptional regulation of the four promoters of the agarase gene (dagA) of Streptomyces coelicolor A3(2). Microbiology 140: 2555-2565. https://doi.org/10.1099/00221287-140-10-2555
  24. Sun D, Setlow P. 1991. Cloning, nucleotide sequence and expression of the Bacillus subtilis ans operon, which codes for L-asparaginase and L-aspartase. J. Bacteriol. 173: 3831-3845. https://doi.org/10.1128/jb.173.12.3831-3845.1991
  25. Wilson KJ, Huges SG, Jefferson RA. 1992. The Escherichia coli gus operon, induction and expression of the gus operon in E. coli and the occurrence and use of GUS in other bacteria, pp. 7-23. In Gallagher SR (ed.). Gus Protocols, Using the Gus Gene as a Reporter of Gene Expression, Vol. 1. Academic Press, San Diego, CA.
  26. Yanisch-Perron C, Vieira J, Messing J. 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33: 103-119. https://doi.org/10.1016/0378-1119(85)90120-9