Inferring Transcriptional Interactions and Regulator Activities from Experimental Data

  • Wang, Rui-Sheng (Department of Electronics, Information and Communication Engineering, Osaka Sangyo University) ;
  • Zhang, Xiang-Sun (Academy of Mathematics and Systems Science, CAS) ;
  • Chen, Luonan (Department of Electronics, Information and Communication Engineering, Osaka Sangyo University)
  • Received : 2007.10.28
  • Accepted : 2007.10.30
  • Published : 2007.12.31

Abstract

Gene regulation is a fundamental process in biological systems, where transcription factors (TFs) play crucial roles. Inferring transcriptional interactions between TFs and their target genes has utmost importance for understanding the complex regulatory mechanisms in cellular systems. On one hand, with the rapid progress of various high-throughput experiment techniques, more and more biological data become available, which makes it possible to quantitatively study gene regulation in a systematic manner. On the other hand, transcription regulation is a complex biological process mediated by many events such as post-translational modifications, degradation, and competitive binding of multiple TFs. In this review, with a particular emphasis on computational methods, we report the recent advances of the research topics related to transcriptional regulatory networks, including how to infer transcriptional interactions, reveal combinatorial regulation mechanisms, and reconstruct TF activity profiles.

Keywords

Acknowledgement

Supported by : National Nature Science Foundation of China (NSFC), Ministry of Science and Technology

References

  1. Balaji, S., Babu, M. M., Iyer, L. M., Luscombe, N. M., and Aravind, L. (2003) Comprehensive analysis of combinatorial regulation using the transcriptional regulatory network of yeast. J. Mol. Biol. 360, 213−227
  2. Banerjee, N. and Zhang, M. Q. (2003) Identifying cooperativity among transcription factors controlling the cell cycle in yeast. Nucleic Acids Res. 31, 7024−7031
  3. Barenco, M., Tomescu, D., Brewer, D., Callard, R., Stark, J., et al. (2006) Ranked prediction of p53 targets using hidden variable dynamic modeling. Genome Biol. 7, R25 https://doi.org/10.1186/gb-2006-7-3-r25
  4. Barrett, C. L. and Palsson, B. O. (2006) Iterative reconstruction of transcriptional regulatory networks: an algorithmic approach. PLoS Comput. Biol. 2, e52 https://doi.org/10.1371/journal.pcbi.0020052
  5. Beal, M. J., Falciani, F., Ghahramani, Z., Rangel, C., and Wild, D. L. (2005) A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics 21, 349−356
  6. Bluthgen, N., Kielbasa, S. M., and Herzel, H. (2005) Inferring combinatorial regulation of transcription in silico. Nucleic Acids Res. 33, 272−279 https://doi.org/10.1093/nar/gki016
  7. Bolouri, H. and Davidson, E. H. (2002) Modeling transcriptional regulatory networks. BioEssays 24, 1118−1129
  8. Boulesteix, A. L. and Strimmer, K. (2005) Predicting transcription factor activities from combined analysis of microarray and ChIP data: a partial least squares approach. Theor. Biol. Med. Model. 2, 23 https://doi.org/10.1186/1742-4682-2-23
  9. Chang, Y. H., Wang, Y. C., and Chen, B. S. (2006) Identification of transcription factor cooperativity via stochastic system model. Bioinformatics 22, 2276−2282
  10. Chen, L. and Aihara, K. (2002) Stability of genetic regulatory networks with time delay. IEEE Trans. Circuits Sys. 49, 602− 608
  11. Chen, H. C., Lee, H. C., Lin, T. Y., Li, W. H., and Chen, B. S. (2004a) Quantitative characterization of the transcriptional regulatory network in the yeast cell cycle. Bioinformatics 20, 1914−1927
  12. Chen, L., Wang, R., Kobayashi, T., and Aihara, K. (2004b) Dynamics of gene regulatory networks with cell division cycle. Phys. Rev. E. Stat. Nonlin, Soft Matter Phys. 70, 011909
  13. Chen, K. C., Wang, T. Y., Tseng, H. H., Huang, C. Y., and Kao, C. Y. (2005) A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae. Bioinformatics 21, 2883−2890
  14. Chen, C. C., Zhu, X., and Zhong, S. (2007) Selection of thermodynamic models for combinatorial control of multiple transcription factors in early differentiation of embryonic stem cells. BMC Genomics (in press)
  15. Chen, L., Wang, R. S., and Zhang, X. S. (2008) Biomolecular Networks: Computational Methods and Appliations in Bioinformatics and Systems Biology. Wiley Interscience, NJ, in press
  16. Climescu-Haulica, A. and Quirk, M. D. (2007) A stochastic differential equation model for transcriptional regulatory networks. BMC Bioinformatics 8, S4
  17. Das, D., Banerjee, N., and Zhang, M. Q. (2004) Interacting models of cooperative gene regulation. Proc. Natl. Acad. Sci. USA 101, 16234-16239
  18. Elati, M., Neuvial, P., Bolotin-Fukuhara, M., Barillot, E., Radvanyi, F., et al. (2007) LICORN: learning cooperative regulation networks from gene expression data. Bioinformatics 23, 2407−2414
  19. Ellrott, K., Yang, C., Sladek, F. M., and Jiang, T. (2002) Identifying transcription factor binding sites through Markov chain optimization. Bioinformatics 18, S100−S109 https://doi.org/10.1093/bioinformatics/18.1.109
  20. Gao, F., Foat, B. C., and Bussemaker, H. J. (2004) Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data. BMC Bioinformatics 5, 31 https://doi.org/10.1186/1471-2105-5-31
  21. Gibson, M. and Mjolsness, E. (2004) Modeling the activity of single genes, in Computational Modeling of Genetic and Biochemical Networks, J. M. Bower and H. Bolouri (eds.), pp.1- 48, MIT Press, London
  22. Hackney, J. A., Ehrenkaufer, G. M., and Singh, U. (2007) Identification of putative transcriptional regulatory networks in Entamoeba histolytica using Bayesian inference. Nucleic Acids Res. 35, 2141−2152
  23. Hannenhalli, S. and Levy, S. (2002) Predicting transcription factor synergism. Nucleic Acids Res. 30, 4278−4284
  24. Harbison, C. T., Gordon, D. B., Lee, T. I., Rinaldi, N. J., Macisaac, K. D. et al. (2004) Transcriptional regulatory code of a eukaryotic genome. Nature 431, 99−104 https://doi.org/10.1038/nature02881
  25. Hart, C. E., Mjolsness, E., and Wold, B. J. (2006) Connectivity in the yeast cell cycle transcription network: inferences from neural networks. PLoS Comput. Biol. 2, e169 https://doi.org/10.1371/journal.pcbi.0020169
  26. Haverty, P. M., Hansen, U., and Weng, Z. (2004) Computational inference of transcriptional regulatory networks from expression profiling and transcription factor binding site identification. Nucleic Acids Res. 32, 179−188 https://doi.org/10.1093/nar/gnh186
  27. He, F., Buer, J., Zeng, A. P., and Balling, R. (2007) Dynamic cumulative activity of transcription factors as a mechanism of quantitative gene regulation. Genome Biol. 8, R181 https://doi.org/10.1186/gb-2007-8-9-r181
  28. Hermsen, R., Tans, S., and Wolde, P.R. (2006) Transcriptional regulation by competing transcription factor modules. PLoS Comput. Biol. 2, e164 https://doi.org/10.1371/journal.pcbi.0020164
  29. Heron, E. A., Finkenstädt, B., and Rand, D. A. (2007) Bayesian inference for dynamic transcriptional regulation: the Hes1 system as a case study. Bioinformatics 23, 2596−2603
  30. Husmeier, D. (2003) Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 19, 2271− 2282
  31. de Jong, H. (2002) Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 9, 67−103
  32. Kato, M., Hata, N., Banerjee, N., Futcher, B., and Zhang, M.Q. (2004) Identifying combinatorial regulation of transcription factors and binding motifs. Genome Biol. 5, R56 https://doi.org/10.1186/gb-2004-5-8-r56
  33. Kao, K., Yang, Y., Boscolo, R., Sabatti, C., Roychowdhury, V., et al. (2004). Transcriptome-based determination of multiple transcription regulator activities in Escherichia coli by using network component analysis. Proc. Natl. Acad. Sci. USA 101, 641−646
  34. Khanin, R., Vinciotti,V., and Wit, E. (2006) Reconstructing repressor protein levels from expression of gene targets in E. coli. Proc. Natl. Acad. Sci. USA 103, 18592−18596
  35. Khanin, R., Vinciotti,V., Mersinias, V., Smith, P., and Wit, E. (2007) Statistical reconstruction of transcription factor activity using Michaelis-Menten kinetics. Biometrics 63, 816−823
  36. Lawley, D. N. and Maxwell, A. E. (1971) Factor Analysis as a Statistical Method, 2nd ed., Butterworths
  37. Lawrence, N., Sanguinetti, G., and Rattray, M. (2006) Modelling transcriptional regulation using Gaussian processes. Neural Inf. Process. Sys. Conf., 2006
  38. Lee, T. I., Rinaldi, N. J., Robert, F., Odom, D. T., Bar-Joseph, Z., et al. (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799−804
  39. Levine, E., Zhang, Z., Kuhlman, T., and Hwa, T. (2007) Quantitative characteristics of gene regulation by small RNA. PLoS Biol. 5, e229 https://doi.org/10.1371/journal.pbio.0050229
  40. Li, H., Sun, Y., and Zhan, M. (2006a) The discovery of transcriptional modules by a two-stage matrix decomposition approach. Bioinformatics 23, 473−479
  41. Li, Z., Shaw, S. M., Yedwabnick, M. J., and Chan, C. (2006b) Using a state-space model with hidden variables to infer transcription factor activities. Bioinformatics 22, 747−754
  42. Liao, J. C., Boscolo, R., Yang, Y. L., Tran, L. M., Sabatti, C., et al. (2003) Network component analysis: reconstruction of regulatory signals in biological systems. Proc. Natl. Acad. Sci. USA 100, 15522−15527
  43. Meyer, P. E., Kontos, K., Lafitte, F., and Bontempi, G. (2007) Information-theoretic inference of large transcriptional regulatory networks. EURASIP J. Bioinform. Syst. Biol. 2007, 79879
  44. Nachman, I., Regev, A., and Friedman, N. (2004) Inferring quantitative models of regulatory networks from expression data. Bioinformatics 20, i248−i256
  45. Nagamine, N., Kawada, Y., and Sakakibara, Y. (2005) Identifying cooperative transcriptional regulations using proteinprotein interactions. Nucleic Acids Res. 33, 4828−4837
  46. Newman, J. R. S., Ghaemmaghami, S., Ihmels, J., Breslow, D. K., Noble, M., et al. (2006) Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441, 840−846
  47. Nguyen, D. H. and D'haeseleer, P. (2006) Deciphering principles of transcription regulation in eukaryotic genomes. Mol. Syst. Bio., msb4100054
  48. Pilpel, Y., Sudarsanam, P., and Church, G. (2001) Identifying regulatory networks by combinatorial analysis of promoter elements. Nature Genet. 29, 153−159
  49. Pournara, I. and Wernisch, L. (2007) Factor analysis for gene regulatory networks and transcription factor activity profiles. BMC Bioinformatics 8, 61 https://doi.org/10.1186/1471-2105-8-61
  50. Qian, J., Lin, J., Luscombe, N. M., Yu, H., and Gerstein, M. (2003) Prediction of regulatory networks: genome-wide identification of transcription factor targets from gene expression data. Bioinformatics 19, 1917−1926
  51. Remenyi, A., Scholer, H. R., and Wilmanns, M. (2004) Combinatorial control of gene expression. Nat. Struc. Mol. Biol. 11, 812−815
  52. Rogers, S., Khanin, R., and Girolami, M. (2007) Bayesian modelbased inference of transcription factor activity. BMC Bioinformatics 8, S2 https://doi.org/10.1186/1471-2105-8-2
  53. Ryu, T., Kim, Y., Kim, D. W., and Lee, D. (2007) Computational identification of combinatorial regulation and transcription factor binding sites. Biotechnol. Bioeng. 97, 1594− 1602
  54. Sabatti, C. and James, G. M. (2006) Bayesian sparse hidden components analysis for transcription regulation networks. Bioinformatics 15, 739−746
  55. Salgado, H., Gama-Castro, S., Peralta-Gil, M., and Diaz-Peredo, E. (2006) RegulonDB (version 5.0): Escherichia coli K-12 transcriptional regulatory network, operon organization, and growth conditions. Nucleic Acids Res. 34, D394−D397
  56. Sanguinetti, G., Lawrence, N. D., and Rattray, M. (2006a) A probabilistic dynamical model for quantitative inference of the regulatory mechanism of transcription. Bioinformatics 22, 1753−1759
  57. Sanguinetti, G., Lawrence, N. D., and Rattray, M. (2006b) Probabilistic inference of transcription factor concentrations and gene-specific regulatory activities. Bioinformatics 22, 2775−2781
  58. Sharma, M., George, A. A., Singh, B. N., Sahoo, N. C., and Rao, K. V. S. (2007) Regulation of transcript elongation through cooperative and ordered recruitment of cofactors. J. Biol. Chem. 282, 20887−20896
  59. Shimoni, Y., Friedlander, G., Hetzroni, G., Niv, G., Altuvia, S., et al. (2007) Regulation of gene expression by small noncoding RNAs: a quantitative view. Mol. Syst. Biol. 3, 138
  60. Sinha, S. and Tompa, M. (2002) Discovery of novel transcription factor binding sites by statistical overrepresentation. Nucleic Acids Res. 24, 5549−5560
  61. Smith, A. D., Sumazin, P., Das, D., and Zhang, M. Q. (2005) Mining ChIP-chip data for transcription factor and cofactor binding sites. Bioinformatics 21, i403−i412
  62. Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., et al. (1998) Comprehensive identification of cell cycleregulated genes of the yeast Saccharomyces cererisiae by microarray hybridization. Mol. Biol. Cell 9, 3273−3297
  63. Sun, N., Carroll, R. J., and Zhao, H. (2006) Bayesian error analysis model for reconstructing transcriptional regulatory networks, Proc. Natl. Acad. Sci. USA 103, 7988−7993
  64. Teixeira, M. C., Monteiro, P., and Jain, P. (2006) The YEASTRACT database: a tool for the analysis of transcription regulatory associations in S. cerevisiae. Nucleic Acids Res. 34, D446−D451 https://doi.org/10.1093/nar/gkj455
  65. Tootle, T. L. and Rebay, I. (2005) Post-translational modifications influence transcription factor activity: a view from the ETS superfamily. BioEssays 27, 285−298
  66. Tsai, H. K., Lu, H. H. S., and Li, W. H. (2005) Statistical methods for identifying yeast cell cycle transcription factors. Proc. Natl. Acad. Sci. USA 102, 13532−13537
  67. Utsugi, A. and Kumagai, T. (2001) Bayesian analysis of mixtures of factor analyzers. Neural Comput. 13, 993−1002
  68. Veitia, R. A. (2003) A sigmoidal transcriptional response: cooperativity, synergy and dosage effects. Biol. Rev. 78, 149−170
  69. Vu, T. T. and Vohradsky, J. (2007) Nonlinear differential equation model for quantification of transcriptional regulation applied to microarray data of Saccharomyces cerevisiae. Nucleic Acids Res. 35, 279−287 https://doi.org/10.1093/nar/gkl907
  70. Wagner, A. (1999) Genes regulated cooperatively by one or more transcription factors and their identification in whole eukaryotic genomes. Bioinformatics 15, 776−784
  71. Wang, J. (2007) A new framework for identifying combinatorial regulation of transcription factors: A case study of the yeast cell cycle. J. Biomed. Inform., in press
  72. Wang, R. S., Wang, Y., Zhang, X. S., and Chen, L. (2007) Inferring transcriptional regulatory networks from high-throughtput data. Bioinformatics, doi:10.1093/bioinformatics/btm465
  73. Wang, W., Cherry, J. M., Nochomovitz, Y., Jolly, E., Botstein, D., et al. (2005) Inference of combinatorial regulation in yeast transcriptional networks: A case study of sporulation. Proc. Natl. Acad. Sci. USA 102, 1998-2003
  74. Wang, Y., Joshi, T., Zhang, X. S., Xu, D., and Chen, L. (2006a) Inferring gene regulatory networks from multiple microarray datasets. Bioinformatics 22, 2413−2420
  75. Wang, Y., Joshi, T., Xu, D., Zhang, X. S., and Chen, L. (2006b) Supervised inference of gene regulatory networks by linear programming. Lecture Notes in Bioinformatics 4115, 551-561
  76. Wu, W. S., Li, W. H., and Chen, B. S. (2006) Computational reconstruction of transcriptional regulatory modules of the yeast cell cycle. BMC Bioinformatics 7, 421 https://doi.org/10.1186/1471-2105-7-421
  77. Wu, W. S., Li, W. H., and Chen, B. S. (2007) Identifying regulatory targets of cell cycle transcription factors using gene expression and ChIP-chip data. BMC Bioinformatics 8, 188
  78. Yeung, M. K. S., Tegner, J., and Collins, J. (2002) Reverse engineering gene networks using singular value decomposition and robust regression. Proc. Natl. Acad. Sci. USA 99, 6163− 6168
  79. Yu, T. and Li, K. C. (2005) Inference of transcriptional regulatory network by two-stage constrained space factor analysis. Bioinformatics 21, 4033−4038
  80. Yu, X., Lin, J., Zack, D. J., and Qian, J. (2006) Computational analysis of tissue-specific combinatorial gene regulation: predicting interaction between transcription factors in human tissues. Nucleic Acids Res. 34, 4925−4936