Acknowledgement
Supported by : National Nature Science Foundation of China (NSFC), Ministry of Science and Technology
References
- Balaji, S., Babu, M. M., Iyer, L. M., Luscombe, N. M., and Aravind, L. (2003) Comprehensive analysis of combinatorial regulation using the transcriptional regulatory network of yeast. J. Mol. Biol. 360, 213−227
- Banerjee, N. and Zhang, M. Q. (2003) Identifying cooperativity among transcription factors controlling the cell cycle in yeast. Nucleic Acids Res. 31, 7024−7031
- Barenco, M., Tomescu, D., Brewer, D., Callard, R., Stark, J., et al. (2006) Ranked prediction of p53 targets using hidden variable dynamic modeling. Genome Biol. 7, R25 https://doi.org/10.1186/gb-2006-7-3-r25
- Barrett, C. L. and Palsson, B. O. (2006) Iterative reconstruction of transcriptional regulatory networks: an algorithmic approach. PLoS Comput. Biol. 2, e52 https://doi.org/10.1371/journal.pcbi.0020052
- Beal, M. J., Falciani, F., Ghahramani, Z., Rangel, C., and Wild, D. L. (2005) A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics 21, 349−356
- Bluthgen, N., Kielbasa, S. M., and Herzel, H. (2005) Inferring combinatorial regulation of transcription in silico. Nucleic Acids Res. 33, 272−279 https://doi.org/10.1093/nar/gki016
- Bolouri, H. and Davidson, E. H. (2002) Modeling transcriptional regulatory networks. BioEssays 24, 1118−1129
- Boulesteix, A. L. and Strimmer, K. (2005) Predicting transcription factor activities from combined analysis of microarray and ChIP data: a partial least squares approach. Theor. Biol. Med. Model. 2, 23 https://doi.org/10.1186/1742-4682-2-23
- Chang, Y. H., Wang, Y. C., and Chen, B. S. (2006) Identification of transcription factor cooperativity via stochastic system model. Bioinformatics 22, 2276−2282
- Chen, L. and Aihara, K. (2002) Stability of genetic regulatory networks with time delay. IEEE Trans. Circuits Sys. 49, 602− 608
- Chen, H. C., Lee, H. C., Lin, T. Y., Li, W. H., and Chen, B. S. (2004a) Quantitative characterization of the transcriptional regulatory network in the yeast cell cycle. Bioinformatics 20, 1914−1927
- Chen, L., Wang, R., Kobayashi, T., and Aihara, K. (2004b) Dynamics of gene regulatory networks with cell division cycle. Phys. Rev. E. Stat. Nonlin, Soft Matter Phys. 70, 011909
- Chen, K. C., Wang, T. Y., Tseng, H. H., Huang, C. Y., and Kao, C. Y. (2005) A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae. Bioinformatics 21, 2883−2890
- Chen, C. C., Zhu, X., and Zhong, S. (2007) Selection of thermodynamic models for combinatorial control of multiple transcription factors in early differentiation of embryonic stem cells. BMC Genomics (in press)
- Chen, L., Wang, R. S., and Zhang, X. S. (2008) Biomolecular Networks: Computational Methods and Appliations in Bioinformatics and Systems Biology. Wiley Interscience, NJ, in press
- Climescu-Haulica, A. and Quirk, M. D. (2007) A stochastic differential equation model for transcriptional regulatory networks. BMC Bioinformatics 8, S4
- Das, D., Banerjee, N., and Zhang, M. Q. (2004) Interacting models of cooperative gene regulation. Proc. Natl. Acad. Sci. USA 101, 16234-16239
- Elati, M., Neuvial, P., Bolotin-Fukuhara, M., Barillot, E., Radvanyi, F., et al. (2007) LICORN: learning cooperative regulation networks from gene expression data. Bioinformatics 23, 2407−2414
- Ellrott, K., Yang, C., Sladek, F. M., and Jiang, T. (2002) Identifying transcription factor binding sites through Markov chain optimization. Bioinformatics 18, S100−S109 https://doi.org/10.1093/bioinformatics/18.1.109
- Gao, F., Foat, B. C., and Bussemaker, H. J. (2004) Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data. BMC Bioinformatics 5, 31 https://doi.org/10.1186/1471-2105-5-31
- Gibson, M. and Mjolsness, E. (2004) Modeling the activity of single genes, in Computational Modeling of Genetic and Biochemical Networks, J. M. Bower and H. Bolouri (eds.), pp.1- 48, MIT Press, London
- Hackney, J. A., Ehrenkaufer, G. M., and Singh, U. (2007) Identification of putative transcriptional regulatory networks in Entamoeba histolytica using Bayesian inference. Nucleic Acids Res. 35, 2141−2152
- Hannenhalli, S. and Levy, S. (2002) Predicting transcription factor synergism. Nucleic Acids Res. 30, 4278−4284
- Harbison, C. T., Gordon, D. B., Lee, T. I., Rinaldi, N. J., Macisaac, K. D. et al. (2004) Transcriptional regulatory code of a eukaryotic genome. Nature 431, 99−104 https://doi.org/10.1038/nature02881
- Hart, C. E., Mjolsness, E., and Wold, B. J. (2006) Connectivity in the yeast cell cycle transcription network: inferences from neural networks. PLoS Comput. Biol. 2, e169 https://doi.org/10.1371/journal.pcbi.0020169
- Haverty, P. M., Hansen, U., and Weng, Z. (2004) Computational inference of transcriptional regulatory networks from expression profiling and transcription factor binding site identification. Nucleic Acids Res. 32, 179−188 https://doi.org/10.1093/nar/gnh186
- He, F., Buer, J., Zeng, A. P., and Balling, R. (2007) Dynamic cumulative activity of transcription factors as a mechanism of quantitative gene regulation. Genome Biol. 8, R181 https://doi.org/10.1186/gb-2007-8-9-r181
- Hermsen, R., Tans, S., and Wolde, P.R. (2006) Transcriptional regulation by competing transcription factor modules. PLoS Comput. Biol. 2, e164 https://doi.org/10.1371/journal.pcbi.0020164
- Heron, E. A., Finkenstädt, B., and Rand, D. A. (2007) Bayesian inference for dynamic transcriptional regulation: the Hes1 system as a case study. Bioinformatics 23, 2596−2603
- Husmeier, D. (2003) Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 19, 2271− 2282
- de Jong, H. (2002) Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 9, 67−103
- Kato, M., Hata, N., Banerjee, N., Futcher, B., and Zhang, M.Q. (2004) Identifying combinatorial regulation of transcription factors and binding motifs. Genome Biol. 5, R56 https://doi.org/10.1186/gb-2004-5-8-r56
- Kao, K., Yang, Y., Boscolo, R., Sabatti, C., Roychowdhury, V., et al. (2004). Transcriptome-based determination of multiple transcription regulator activities in Escherichia coli by using network component analysis. Proc. Natl. Acad. Sci. USA 101, 641−646
- Khanin, R., Vinciotti,V., and Wit, E. (2006) Reconstructing repressor protein levels from expression of gene targets in E. coli. Proc. Natl. Acad. Sci. USA 103, 18592−18596
- Khanin, R., Vinciotti,V., Mersinias, V., Smith, P., and Wit, E. (2007) Statistical reconstruction of transcription factor activity using Michaelis-Menten kinetics. Biometrics 63, 816−823
- Lawley, D. N. and Maxwell, A. E. (1971) Factor Analysis as a Statistical Method, 2nd ed., Butterworths
- Lawrence, N., Sanguinetti, G., and Rattray, M. (2006) Modelling transcriptional regulation using Gaussian processes. Neural Inf. Process. Sys. Conf., 2006
- Lee, T. I., Rinaldi, N. J., Robert, F., Odom, D. T., Bar-Joseph, Z., et al. (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799−804
- Levine, E., Zhang, Z., Kuhlman, T., and Hwa, T. (2007) Quantitative characteristics of gene regulation by small RNA. PLoS Biol. 5, e229 https://doi.org/10.1371/journal.pbio.0050229
- Li, H., Sun, Y., and Zhan, M. (2006a) The discovery of transcriptional modules by a two-stage matrix decomposition approach. Bioinformatics 23, 473−479
- Li, Z., Shaw, S. M., Yedwabnick, M. J., and Chan, C. (2006b) Using a state-space model with hidden variables to infer transcription factor activities. Bioinformatics 22, 747−754
- Liao, J. C., Boscolo, R., Yang, Y. L., Tran, L. M., Sabatti, C., et al. (2003) Network component analysis: reconstruction of regulatory signals in biological systems. Proc. Natl. Acad. Sci. USA 100, 15522−15527
- Meyer, P. E., Kontos, K., Lafitte, F., and Bontempi, G. (2007) Information-theoretic inference of large transcriptional regulatory networks. EURASIP J. Bioinform. Syst. Biol. 2007, 79879
- Nachman, I., Regev, A., and Friedman, N. (2004) Inferring quantitative models of regulatory networks from expression data. Bioinformatics 20, i248−i256
- Nagamine, N., Kawada, Y., and Sakakibara, Y. (2005) Identifying cooperative transcriptional regulations using proteinprotein interactions. Nucleic Acids Res. 33, 4828−4837
- Newman, J. R. S., Ghaemmaghami, S., Ihmels, J., Breslow, D. K., Noble, M., et al. (2006) Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441, 840−846
- Nguyen, D. H. and D'haeseleer, P. (2006) Deciphering principles of transcription regulation in eukaryotic genomes. Mol. Syst. Bio., msb4100054
- Pilpel, Y., Sudarsanam, P., and Church, G. (2001) Identifying regulatory networks by combinatorial analysis of promoter elements. Nature Genet. 29, 153−159
- Pournara, I. and Wernisch, L. (2007) Factor analysis for gene regulatory networks and transcription factor activity profiles. BMC Bioinformatics 8, 61 https://doi.org/10.1186/1471-2105-8-61
- Qian, J., Lin, J., Luscombe, N. M., Yu, H., and Gerstein, M. (2003) Prediction of regulatory networks: genome-wide identification of transcription factor targets from gene expression data. Bioinformatics 19, 1917−1926
- Remenyi, A., Scholer, H. R., and Wilmanns, M. (2004) Combinatorial control of gene expression. Nat. Struc. Mol. Biol. 11, 812−815
- Rogers, S., Khanin, R., and Girolami, M. (2007) Bayesian modelbased inference of transcription factor activity. BMC Bioinformatics 8, S2 https://doi.org/10.1186/1471-2105-8-2
- Ryu, T., Kim, Y., Kim, D. W., and Lee, D. (2007) Computational identification of combinatorial regulation and transcription factor binding sites. Biotechnol. Bioeng. 97, 1594− 1602
- Sabatti, C. and James, G. M. (2006) Bayesian sparse hidden components analysis for transcription regulation networks. Bioinformatics 15, 739−746
- Salgado, H., Gama-Castro, S., Peralta-Gil, M., and Diaz-Peredo, E. (2006) RegulonDB (version 5.0): Escherichia coli K-12 transcriptional regulatory network, operon organization, and growth conditions. Nucleic Acids Res. 34, D394−D397
- Sanguinetti, G., Lawrence, N. D., and Rattray, M. (2006a) A probabilistic dynamical model for quantitative inference of the regulatory mechanism of transcription. Bioinformatics 22, 1753−1759
- Sanguinetti, G., Lawrence, N. D., and Rattray, M. (2006b) Probabilistic inference of transcription factor concentrations and gene-specific regulatory activities. Bioinformatics 22, 2775−2781
- Sharma, M., George, A. A., Singh, B. N., Sahoo, N. C., and Rao, K. V. S. (2007) Regulation of transcript elongation through cooperative and ordered recruitment of cofactors. J. Biol. Chem. 282, 20887−20896
- Shimoni, Y., Friedlander, G., Hetzroni, G., Niv, G., Altuvia, S., et al. (2007) Regulation of gene expression by small noncoding RNAs: a quantitative view. Mol. Syst. Biol. 3, 138
- Sinha, S. and Tompa, M. (2002) Discovery of novel transcription factor binding sites by statistical overrepresentation. Nucleic Acids Res. 24, 5549−5560
- Smith, A. D., Sumazin, P., Das, D., and Zhang, M. Q. (2005) Mining ChIP-chip data for transcription factor and cofactor binding sites. Bioinformatics 21, i403−i412
- Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., et al. (1998) Comprehensive identification of cell cycleregulated genes of the yeast Saccharomyces cererisiae by microarray hybridization. Mol. Biol. Cell 9, 3273−3297
- Sun, N., Carroll, R. J., and Zhao, H. (2006) Bayesian error analysis model for reconstructing transcriptional regulatory networks, Proc. Natl. Acad. Sci. USA 103, 7988−7993
- Teixeira, M. C., Monteiro, P., and Jain, P. (2006) The YEASTRACT database: a tool for the analysis of transcription regulatory associations in S. cerevisiae. Nucleic Acids Res. 34, D446−D451 https://doi.org/10.1093/nar/gkj455
- Tootle, T. L. and Rebay, I. (2005) Post-translational modifications influence transcription factor activity: a view from the ETS superfamily. BioEssays 27, 285−298
- Tsai, H. K., Lu, H. H. S., and Li, W. H. (2005) Statistical methods for identifying yeast cell cycle transcription factors. Proc. Natl. Acad. Sci. USA 102, 13532−13537
- Utsugi, A. and Kumagai, T. (2001) Bayesian analysis of mixtures of factor analyzers. Neural Comput. 13, 993−1002
- Veitia, R. A. (2003) A sigmoidal transcriptional response: cooperativity, synergy and dosage effects. Biol. Rev. 78, 149−170
- Vu, T. T. and Vohradsky, J. (2007) Nonlinear differential equation model for quantification of transcriptional regulation applied to microarray data of Saccharomyces cerevisiae. Nucleic Acids Res. 35, 279−287 https://doi.org/10.1093/nar/gkl907
- Wagner, A. (1999) Genes regulated cooperatively by one or more transcription factors and their identification in whole eukaryotic genomes. Bioinformatics 15, 776−784
- Wang, J. (2007) A new framework for identifying combinatorial regulation of transcription factors: A case study of the yeast cell cycle. J. Biomed. Inform., in press
- Wang, R. S., Wang, Y., Zhang, X. S., and Chen, L. (2007) Inferring transcriptional regulatory networks from high-throughtput data. Bioinformatics, doi:10.1093/bioinformatics/btm465
- Wang, W., Cherry, J. M., Nochomovitz, Y., Jolly, E., Botstein, D., et al. (2005) Inference of combinatorial regulation in yeast transcriptional networks: A case study of sporulation. Proc. Natl. Acad. Sci. USA 102, 1998-2003
- Wang, Y., Joshi, T., Zhang, X. S., Xu, D., and Chen, L. (2006a) Inferring gene regulatory networks from multiple microarray datasets. Bioinformatics 22, 2413−2420
- Wang, Y., Joshi, T., Xu, D., Zhang, X. S., and Chen, L. (2006b) Supervised inference of gene regulatory networks by linear programming. Lecture Notes in Bioinformatics 4115, 551-561
- Wu, W. S., Li, W. H., and Chen, B. S. (2006) Computational reconstruction of transcriptional regulatory modules of the yeast cell cycle. BMC Bioinformatics 7, 421 https://doi.org/10.1186/1471-2105-7-421
- Wu, W. S., Li, W. H., and Chen, B. S. (2007) Identifying regulatory targets of cell cycle transcription factors using gene expression and ChIP-chip data. BMC Bioinformatics 8, 188
- Yeung, M. K. S., Tegner, J., and Collins, J. (2002) Reverse engineering gene networks using singular value decomposition and robust regression. Proc. Natl. Acad. Sci. USA 99, 6163− 6168
- Yu, T. and Li, K. C. (2005) Inference of transcriptional regulatory network by two-stage constrained space factor analysis. Bioinformatics 21, 4033−4038
- Yu, X., Lin, J., Zack, D. J., and Qian, J. (2006) Computational analysis of tissue-specific combinatorial gene regulation: predicting interaction between transcription factors in human tissues. Nucleic Acids Res. 34, 4925−4936