DOI QR코드

DOI QR Code

Post-Translational Regulations of Transcriptional Activity of RUNX2

  • Kim, Hyun-Jung (Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Kim, Woo-Jin (Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Ryoo, Hyun-Mo (Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University)
  • Received : 2019.10.29
  • Accepted : 2019.12.04
  • Published : 2020.02.29

Abstract

Runt-related transcription factor 2 (RUNX2) is a key transcription factor for bone formation and osteoblast differentiation. Various signaling pathways and mechanisms that regulate the expression and transcriptional activity of RUNX2 have been thoroughly investigated since the involvement of RUNX2 was first reported in bone formation. As the regulation of Runx2 expression by extracellular signals has recently been reviewed, this review focuses on the regulation of post-translational RUNX2 activity. Transcriptional activity of RUNX2 is regulated at the post-translational level by various enzymes including kinases, acetyl transferases, deacetylases, ubiquitin E3 ligases, and prolyl isomerases. We describe a sequential and linear causality between post-translational modifications of RUNX2 by these enzymes. RUNX2 is one of the most important osteogenic transcription factors; however, it is not a suitable drug target. Here, we suggest enzymes that directly regulate the stability and/or transcriptional activity of RUNX2 at a post-translational level as effective drug targets for treating bone diseases.

Keywords

References

  1. Aronson, B.D., Fisher, A.L., Blechman, K., Caudy, M., and Gergen, J.P. (1997). Groucho-dependent and -independent repression activities of Runt domain proteins. Mol. Cell. Biol. 17, 5581-5587. https://doi.org/10.1128/MCB.17.9.5581
  2. Bae, H.S., Yoon, W.J., Cho, Y.D., Islam, R., Shin, H.R., Kim, B.S., Lim, J.M., Seo, M.S., Cho, S.A., Choi, K.Y., et al. (2017). An HDAC inhibitor, entinostat/MS- 275, partially prevents delayed cranial suture closure in heterozygous Runx2 null mice. J. Bone Miner. Res. 32, 951-961. https://doi.org/10.1002/jbmr.3076
  3. Bae, S.C., Ogawa, E., Maruyama, M., Oka, H., Satake, M., Shigesada, K., Jenkins, N.A., Gilbert, D.J., Copeland, N.G., and Ito, Y. (1994). PEBP2 alpha B/mouse AML1 consists of multiple isoforms that possess differential transactivation potentials. Mol. Cell. Biol. 14, 3242-3252. https://doi.org/10.1128/MCB.14.5.3242
  4. Choi, J.Y., Pratap, J., Javed, A., Zaidi, S.K., Xing, L., Balint, E., Dalamangas, S., Boyce, B., van Wijnen, A.J., Lian, J.B., et al. (2001). Subnuclear targeting of Runx/Cbfa/AML factors is essential for tissue-specific differentiation during embryonic development. Proc. Natl. Acad. Sci. U. S. A. 98, 8650-8655. https://doi.org/10.1073/pnas.151236498
  5. Choi, K.Y., Lee, S.W., Park, M.H., Bae, Y.C., Shin, H.I., Nam, S., Kim, Y.J., Kim, H.J., and Ryoo, H.M. (2002). Spatio-temporal expression patterns of Runx2 isoforms in early skeletogenesis. Exp. Mol. Med. 34, 426-433. https://doi.org/10.1038/emm.2002.60
  6. Choi, Y.H., Kim, Y.J., Jeong, H.M., Jin, Y.H., Yeo, C.Y., and Lee, K.Y. (2014). Akt enhances Runx2 protein stability by regulating Smurf2 function during osteoblast differentiation. FEBS J. 281, 3656-3666. https://doi.org/10.1111/febs.12887
  7. Dikic, I., Wakatsuki, S., and Walters, K.J. (2009). Ubiquitin-binding domains - from structures to functions. Nat. Rev. Mol. Cell Biol. 10, 659-671. https://doi.org/10.1038/nrm2767
  8. Ducy, P. and Karsenty, G. (1995). Two distinct osteoblast-specific cis-acting elements control expression of a mouse osteocalcin gene. Mol. Cell. Biol. 15, 1858-1869. https://doi.org/10.1128/MCB.15.4.1858
  9. Inoue, K., Ozaki, S., Shiga, T., Ito, K., Masuda, T., Okado, N., Iseda, T., Kawaguchi, S., Ogawa, M., Bae, S.C., et al. (2002). Runx3 controls the axonal projection of proprioceptive dorsal root ganglion neurons. Nat. Neurosci. 5, 946-954. https://doi.org/10.1038/nn925
  10. Jeon, E.J., Lee, K.Y., Choi, N.S., Lee, M.H., Kim, H.N., Jin, Y.H., Ryoo, H.M., Choi, J.Y., Yoshida, M., Nishino, N., et al. (2006). Bone morphogenetic protein-2 stimulates Runx2 acetylation. J. Biol. Chem. 281, 16502-16511. https://doi.org/10.1074/jbc.M512494200
  11. Jiang, Z.G. and McKnight, C.J. (2006). A phosphorylation-induced conformation change in dematin headpiece. Structure 14, 379-387. https://doi.org/10.1016/j.str.2005.11.007
  12. Jones, D.C., Wein, M.N., Oukka, M., Hofstaetter, J.G., Glimcher, M.J., and Glimcher, L.H. (2006). Regulation of adult bone mass by the zinc finger adapter protein Schnurri-3. Science 312, 1223-1227. https://doi.org/10.1126/science.1126313
  13. Jun, J.H., Yoon, W.J., Seo, S.B., Woo, K.M., Kim, G.S., Ryoo, H.M., and Baek, J.H. (2010). BMP2-activated Erk/MAP kinase stabilizes Runx2 by increasing p300 levels and histone acetyltransferase activity. J. Biol. Chem. 285, 36410-36419. https://doi.org/10.1074/jbc.M110.142307
  14. Kaneki, H., Guo, R., Chen, D., Yao, Z., Schwarz, E.M., Zhang, Y.E., Boyce, B.F., and Xing, L. (2006). Tumor necrosis factor promotes Runx2 degradation through up-regulation of Smurf1 and Smurf2 in osteoblasts. J. Biol. Chem. 281, 4326-4333. https://doi.org/10.1074/jbc.M509430200
  15. Kim, B.G., Kim, H.J., Park, H.J., Kim, Y.J., Yoon, W.J., Lee, S.J., Ryoo, H.M., and Cho, J.Y. (2006). Runx2 phosphorylation induced by fibroblast growth factor-2/protein kinase C pathways. Proteomics 6, 1166-1174. https://doi.org/10.1002/pmic.200500289
  16. Kim, H.J., Kim, J.H., Bae, S.C., Choi, J.Y., Kim, H.J., and Ryoo, H.M. (2003) The protein kinase C pathway plays a central role in the fibroblast growth factor-stimulated expression and transactivation activity of Runx2. J. Biol. Chem. 278, 319-326. https://doi.org/10.1074/jbc.M203750200
  17. Komori, T., Yagi, H., Nomura, S., Yamaguchi, A., Sasaki, K., Deguchi, K., Shimizu, Y., Bronson, R.T., Gao, Y.H., Inada, M., et al. (1997). Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89, 755-764. https://doi.org/10.1016/S0092-8674(00)80258-5
  18. Kugimiya, F., Kawaguchi, H., Ohba, S., Kawamura, N., Hirata, M., Chikuda, H., Azuma, Y., Woodgett, J.R., Nakamura, K., and Chung, U.I. (2007). GSK-3beta controls osteogenesis through regulating Runx2 activity. PLoS One 2, e837. https://doi.org/10.1371/journal.pone.0000837
  19. Lamour, V., Detry, C., Sanchez, C., Henrotin, Y., Castronovo, V., and Bellahcene, A. (2007). Runx2- and histone deacetylase 3-mediated repression is relieved in differentiating human osteoblast cells to allow high bone sialoprotein expression. J. Biol. Chem. 282, 36240-36249. https://doi.org/10.1074/jbc.M705833200
  20. Lee, Z.H., Kim, H.J., and Ryoo, H.M. (2015). A novel osteogenic activity of suberoylanilide hydroxamic acid is synergized by BMP-2. J. Bone Metab. 22, 51-56. https://doi.org/10.11005/jbm.2015.22.2.51
  21. Levanon, D. and Groner, Y. (2004). Structure and regulated expression of mammalian RUNX genes. Oncogene 23, 4211-4219. https://doi.org/10.1038/sj.onc.1207670
  22. Li, Q.L., Ito, K., Sakakura, C., Fukamachi, H., Inoue, K., Chi, X.Z., Lee, K.Y., Nomura, S., Lee, C.W., Han, S.B., et al. (2002). Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 109, 113-124. https://doi.org/10.1016/S0092-8674(02)00690-6
  23. Li, X., Huang, M., Zheng, H., Wang, Y., Ren, F., Shang, Y., Zhai, Y., Irwin, D.M., Shi, Y., Chen, D., et al. (2008). CHIP promotes Runx2 degradation and negatively regulates osteoblast differentiation. J. Cell Biol. 181, 959-972. https://doi.org/10.1083/jcb.200711044
  24. Lu, K.P. and Zhou, X.Z. (2007). The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signalling and disease. Nat. Rev. Mol. Cell Biol. 8, 904-916. https://doi.org/10.1038/nrm2261
  25. Mantovani, F., Tocco, F., Girardini, J., Smith, P., Gasco, M., Lu, X., Crook, T., and Del Sal, G. (2007). The prolyl isomerase Pin1 orchestrates p53 acetylation and dissociation from the apoptosis inhibitor iASPP. Nat. Struct. Mol. Biol. 14, 912-920. https://doi.org/10.1038/nsmb1306
  26. Maruyama, Z., Yoshida, C.A., Furuichi, T., Amizuka, N., Ito, M., Fukuyama, R., Miyazaki, T., Kitaura, H., Nakamura, K., Fujita, T., et al. (2007). Runx2 determines bone maturity and turnover rate in postnatal bone development and is involved in bone loss in estrogen deficiency. Dev. Dyn. 236, 1876-1890. https://doi.org/10.1002/dvdy.21187
  27. Moloney, D.M., Wall, S.A., Ashworth, G.J., Oldridge, M., Glass, I.A., Francomano, C.A., Muenke, M., and Wilkie, A.O. (1997). Prevalence of Pro250Arg mutation of fibroblast growth factor receptor 3 in coronal craniosynostosis. Lancet 349, 1059-1062. https://doi.org/10.1016/S0140-6736(96)09082-4
  28. Morrison, N.A., Stephens, A.A., Osato, M., Polly, P., Tan, T.C., Yamashita, N., Doecke, J.D., Pasco, J., Fozzard, N., Jones, G., et al. (2012). Glutamine repeat variants in human RUNX2 associated with decreased femoral neck BMD, broadband ultrasound attenuation and target gene transactivation. PLoS One 7, e42617. https://doi.org/10.1371/journal.pone.0042617
  29. Mundlos, S., Otto, F., Mundlos, C., Mulliken, J.B., Aylsworth, A.S., Albright, S., Lindhout, D., Cole, W.G., Henn, W., Knoll, J.H., et al. (1997). Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 89, 773-779. https://doi.org/10.1016/S0092-8674(00)80260-3
  30. Ogawa, E., Inuzuka, M., Maruyama, M., Satake, M., Naito-Fujimoto, M., Ito, Y., and Shigesada, K. (1993a). Molecular cloning and characterization of PEBP2 beta, the heterodimeric partner of a novel Drosophila runt-related DNA binding protein PEBP2 alpha. Virology 194, 314-331. https://doi.org/10.1006/viro.1993.1262
  31. Ogawa, E., Maruyama, M., Kagoshima, H., Inuzuka, M., Lu, J., Satake, M., Shigesada, K., and Ito, Y. (1993b). PEBP2/PEA2 represents a family of transcription factors homologous to the products of the Drosophila runt gene and the human AML1 gene. Proc. Natl. Acad. Sci. U. S. A. 90, 6859-6863. https://doi.org/10.1073/pnas.90.14.6859
  32. Olsen, J.V., Blagoev, B., Gnad, F., Macek, B., Kumar, C., Mortensen, P., and Mann, M. (2006). Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635-648. https://doi.org/10.1016/j.cell.2006.09.026
  33. Otto, F., Thornell, A.P., Crompton, T., Denzel, A., Gilmour, K.C., Rosewell, I.R., Stamp, G.W., Beddington, R.S., Mundlos, S., Olsen, B.R., et al. (1997). Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89, 765-771. https://doi.org/10.1016/S0092-8674(00)80259-7
  34. Pande, S., Browne, G., Padmanabhan, S., Zaidi, S.K., Lian, J.B., van Wijnen, A.J., Stein, J.L., and Stein, G.S. (2013). Oncogenic cooperation between PI3K/Akt signaling and transcription factor Runx2 promotes the invasive properties of metastatic breast cancer cells. J. Cell. Physiol. 228, 1784-1792. https://doi.org/10.1002/jcp.24339
  35. Park, M.H., Shin, H.I., Choi, J.Y., Nam, S.H., Kim, Y.J., Kim, H.J., and Ryoo, H.M. (2001). Differential expression patterns of Runx2 isoforms in cranial suture morphogenesis. J. Bone Miner. Res. 16, 885-892. https://doi.org/10.1359/jbmr.2001.16.5.885
  36. Park, O.J., Kim, H.J., Woo, K.M., Baek, J.H., and Ryoo, H.M. (2010). FGF2- activated ERK mitogen-activated protein kinase enhances Runx2 acetylation and stabilization. J. Biol. Chem. 285, 3568-3574. https://doi.org/10.1074/jbc.M109.055053
  37. Pawson, T. and Scott, J.D. (2005). Protein phosphorylation in signaling--50 years and counting. Trends Biochem. Sci. 30, 286-290. https://doi.org/10.1016/j.tibs.2005.04.013
  38. Polonio-Vallon, T., Kruger, D., and Hofmann, T.G. (2014). ShaPINg cell fate upon DNA damage: role of Pin1 isomerase in DNA damage-induced cell death and repair. Front. Oncol. 4, 148.
  39. Qiao, M., Shapiro, P., Fosbrink, M., Rus, H., Kumar, R., and Passaniti, A. (2006). Cell cycle-dependent phosphorylation of the RUNX2 transcription factor by cdc2 regulates endothelial cell proliferation. J. Biol. Chem. 281, 7118-7128. https://doi.org/10.1074/jbc.M508162200
  40. Schroeder, T.M., Kahler, R.A., Li, X., and Westendorf, J.J. (2004). Histone deacetylase 3 interacts with runx2 to repress the osteocalcin promoter and regulate osteoblast differentiation. J. Biol. Chem. 279, 41998-42007. https://doi.org/10.1074/jbc.M403702200
  41. Selvamurugan, N., Pulumati, M.R., Tyson, D.R., and Partridge, N.C. (2000). Parathyroid hormone regulation of the rat collagenase-3 promoter by protein kinase A-dependent transactivation of core binding factor alpha1. J. Biol. Chem. 275, 5037-5042. https://doi.org/10.1074/jbc.275.7.5037
  42. Selvamurugan, N., Shimizu, E., Lee, M., Liu, T., Li, H., and Partridge, N.C. (2009). Identification and characterization of Runx2 phosphorylation sites involved in matrix metalloproteinase-13 promoter activation. FEBS Lett. 583, 1141-1146. https://doi.org/10.1016/j.febslet.2009.02.040
  43. Shen, R., Wang, X., Drissi, H., Liu, F., O'Keefe, R.J., and Chen, D. (2006). Cyclin D1-cdk4 induce runx2 ubiquitination and degradation. J. Biol. Chem. 281, 16347-16353. https://doi.org/10.1074/jbc.M603439200
  44. Shin, H.R., Bae, H.S., Kim, B.S., Yoon, H.I., Cho, Y.D., Kim, W.J., Choi, K.Y., Lee, Y.S., Woo, K.M., Baek, J.H., et al. (2018). PIN1 is a new therapeutic target of craniosynostosis. Hum. Mol. Genet. 27, 3827-3839.
  45. Stewart, M., Terry, A., Hu, M., O'Hara, M., Blyth, K., Baxter, E., Cameron, E., Onions, D.E., and Neil, J.C. (1997). Proviral insertions induce the expression of bone-specific isoforms of PEBP2alphaA (CBFA1): evidence for a new myc collaborating oncogene. Proc. Natl. Acad. Sci. U. S. A. 94, 8646-8651. https://doi.org/10.1073/pnas.94.16.8646
  46. Su, N., Jin, M., and Chen, L. (2014). Role of FGF/FGFR signaling in skeletal development and homeostasis: learning from mouse models. Bone Res. 2, 14003. https://doi.org/10.1038/boneres.2014.3
  47. Thacker, G., Kumar, Y., Khan, M.P., Shukla, N., Kapoor, I., Kanaujiya, J.K., Lochab, S., Ahmed, S., Sanyal, S., Chattopadhyay, N., et al. (2016). Skp2 inhibits osteogenesis by promoting ubiquitin-proteasome degradation of Runx2. Biochim. Biophys. Acta 1863, 510-519. https://doi.org/10.1016/j.bbamcr.2016.01.010
  48. Thirunavukkarasu, K., Mahajan, M., McLarren, K.W., Stifani, S., and Karsenty, G. (1998). Two domains unique to osteoblast-specific transcription factor Osf2/Cbfa1 contribute to its transactivation function and its inability to heterodimerize with Cbfbeta. Mol. Cell. Biol. 18, 4197-4208. https://doi.org/10.1128/MCB.18.7.4197
  49. Vortkamp, A., Lee, K., Lanske, B., Segre, G.V., Kronenberg, H.M., and Tabin, C.J. (1996). Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 273, 613-622. https://doi.org/10.1126/science.273.5275.613
  50. Wang, Q., Stacy, T., Binder, M., Marin-Padilla, M., Sharpe, A.H., and Speck, N.A. (1996). Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc. Natl. Acad. Sci. U. S. A. 93, 3444-3449. https://doi.org/10.1073/pnas.93.8.3444
  51. Westendorf, J.J., Zaidi, S.K., Cascino, J.E., Kahler, R., van Wijnen, A.J., Lian, J.B., Yoshida, M., Stein, G.S., and Li, X. (2002). Runx2 (Cbfa1, AML-3) interacts with histone deacetylase 6 and represses the p21(CIP1/WAF1) promoter. Mol. Cell. Biol. 22, 7982-7992. https://doi.org/10.1128/MCB.22.22.7982-7992.2002
  52. Xiao, G., Jiang, D., Gopalakrishnan, R., and Franceschi, R.T. (2002). Fibroblast growth factor 2 induction of the osteocalcin gene requires MAPK activity and phosphorylation of the osteoblast transcription factor, Cbfa1/Runx2. J. Biol. Chem. 277, 36181-36187. https://doi.org/10.1074/jbc.M206057200
  53. Xiao, G., Jiang, D., Thomas, P., Benson, M.D., Guan, K., Karsenty, G., and Franceschi, R.T. (2000). MAPK pathways activate and phosphorylate the osteoblast-specific transcription factor, Cbfa1. J. Biol. Chem. 275, 4453-4459. https://doi.org/10.1074/jbc.275.6.4453
  54. Yoon, W.J., Cho, Y.D., Kim, W.J., Bae, H.S., Islam, R., Woo, K.M., Baek, J.H., Bae, S.C., and Ryoo, H.M. (2014). Prolyl isomerase Pin1-mediated conformational change and subnuclear focal accumulation of Runx2 are crucial for fibroblast growth factor 2 (FGF2)-induced osteoblast differentiation. J. Biol. Chem. 289, 8828-8838. https://doi.org/10.1074/jbc.M113.516237
  55. Yoon, W.J., Islam, R., Cho, Y.D., Woo, K.M., Baek, J.H., Uchida, T., Komori, T., van Wijnen, A., Stein, J.L., Lian, J.B., et al. (2013). Pin1-mediated Runx2 modification is critical for skeletal development. J. Cell Physiol. 228, 2377-2385. https://doi.org/10.1002/jcp.24403
  56. Zaidi, S.K., Javed, A., Choi, J.Y., van Wijnen, A.J., Stein, J.L., Lian, J.B., and Stein, G.S. (2001). A specific targeting signal directs Runx2/Cbfa1 to subnuclear domains and contributes to transactivation of the osteocalcin gene. J. Cell Sci. 114, 3093-3102. https://doi.org/10.1242/jcs.114.17.3093
  57. Zhang, Z., Deepak, V., Meng, L., Wang, L., Li, Y., Jiang, Q., Zeng, X., and Liu, W. (2012). Analysis of HDAC1-mediated regulation of Runx2-induced osteopontin gene expression in C3h10t1/2 cells. Biotechnol. Lett. 34, 197-203. https://doi.org/10.1007/s10529-011-0756-8
  58. Zhao, M., Qiao, M., Harris, S.E., Oyajobi, B.O., Mundy, G.R., and Chen, D. (2004). Smurf1 inhibits osteoblast differentiation and bone formation in vitro and in vivo. J. Biol. Chem. 279, 12854-12859. https://doi.org/10.1074/jbc.M313294200
  59. Zhao, M., Qiao, M., Oyajobi, B.O., Mundy, G.R., and Chen, D. (2003). E3 ubiquitin ligase Smurf1 mediates core-binding factor alpha1/Runx2 degradation and plays a specific role in osteoblast differentiation. J. Biol. Chem. 278, 27939-27944. https://doi.org/10.1074/jbc.M304132200
  60. Zheng, Q., Zhou, G., Morello, R., Chen, Y., Garcia-Rojas, X., and Lee, B. (2003). Type X collagen gene regulation by Runx2 contributes directly to its hypertrophic chondrocyte-specific expression in vivo. J. Cell Biol. 162, 833-842. https://doi.org/10.1083/jcb.200211089
  61. Zhu, W., He, X., Hua, Y., Li, Q., Wang, J., and Gan, X. (2017). The E3 ubiquitin ligase WWP2 facilitates RUNX2 protein transactivation in a monoubiquitination manner during osteogenic differentiation. J. Biol. Chem. 292, 11178-11188. https://doi.org/10.1074/jbc.M116.772277
  62. Ziros, P.G., Basdra, E.K., and Papavassiliou, A.G. (2008). Runx2: of bone and stretch. Int. J. Biochem. Cell Biol. 40, 1659-1663. https://doi.org/10.1016/j.biocel.2007.05.024

Cited by

  1. RUNX2-modifying enzymes: therapeutic targets for bone diseases vol.52, pp.8, 2020, https://doi.org/10.1038/s12276-020-0471-4
  2. Autophagy was involved in tumor necrosis factor-α-inhibited osteogenic differentiation of murine calvarial osteoblasts through Wnt/β-catenin pathway vol.67, 2020, https://doi.org/10.1016/j.tice.2020.101401
  3. TRIM16 Promotes Osteogenic Differentiation of Human Periodontal Ligament Stem Cells by Modulating CHIP-Mediated Degradation of RUNX2 vol.8, 2021, https://doi.org/10.3389/fcell.2020.625105
  4. Chronic Intermittent Hypobaric Hypoxia Enhances Bone Fracture Healing vol.11, 2020, https://doi.org/10.3389/fendo.2020.582670
  5. Simvastatin Enhances the Chondrogenesis But Not the Osteogenesis of Adipose-Derived Stem Cells in a Hyaluronan Microenvironment vol.9, pp.5, 2020, https://doi.org/10.3390/biomedicines9050559
  6. eIF2α-ATF4 Pathway Activated by a Change in the Calcium Environment Participates in BCP-Mediated Bone Regeneration vol.7, pp.7, 2020, https://doi.org/10.1021/acsbiomaterials.0c01802
  7. Two Novel C-Terminus RUNX2 Mutations in Two Cleidocranial Dysplasia (CCD) Patients Impairing p53 Expression vol.22, pp.19, 2020, https://doi.org/10.3390/ijms221910336