DOI QR코드

DOI QR Code

Molecular Mechanism of Runx2-Dependent Bone Development

  • Komori, Toshihisa (Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences)
  • Received : 2019.10.26
  • Accepted : 2019.12.03
  • Published : 2020.02.29

Abstract

Runx2 is an essential transcription factor for skeletal development. It is expressed in multipotent mesenchymal cells, osteoblast-lineage cells, and chondrocytes. Runx2 plays a major role in chondrocyte maturation, and Runx3 is partly involved. Runx2 regulates chondrocyte proliferation by directly regulating Ihh expression. It also determines whether chondrocytes become those that form transient cartilage or permanent cartilage, and functions in the pathogenesis of osteoarthritis. Runx2 is essential for osteoblast differentiation and is required for the proliferation of osteoprogenitors. Ihh is required for Runx2 expression in osteoprogenitors, and hedgehog signaling and Runx2 induce the differentiation of osteoprogenitors to preosteoblasts in endochondral bone. Runx2 induces Sp7 expression, and Runx2, Sp7, and canonical Wnt signaling are required for the differentiation of preosteoblasts to immature osteoblasts. It also induces the proliferation of osteoprogenitors by directly regulating the expression of Fgfr2 and Fgfr3. Furthermore, Runx2 induces the proliferation of mesenchymal cells and their commitment into osteoblast-lineage cells through the induction of hedgehog (Gli1, Ptch1, Ihh), Fgf (Fgfr2, Fgfr3), Wnt (Tcf7, Wnt10b), and Pthlh (Pth1r) signaling pathway gene expression in calvaria, and more than a half-dosage of Runx2 is required for their expression. This is a major cause of cleidocranial dysplasia, which is caused by heterozygous mutation of RUNX2. Cbfb, which is a co-transcription factor that forms a heterodimer with Runx2, enhances DNA binding of Runx2 and stabilizes Runx2 protein by inhibiting its ubiquitination. Thus, Runx2/Cbfb regulates the proliferation and differentiation of chondrocytes and osteoblast-lineage cells by activating multiple signaling pathways and via their reciprocal regulation.

Keywords

References

  1. Adhami, M.D., Rashid, H., Chen, H., and Javed, A. (2014). Runx2 activity in committed osteoblasts is not essential for embryonic skeletogenesis. Connect. Tissue Res. 55 Suppl 1, 102-106.
  2. Aubin, J.E. and Triffitt, J.T. (2002). Mesenchymal stem cells and osteoblast differentiation. In Principles of Bone Biology, J.P. Bilezikian, L.G. Raisz, and G.A. Rodan, eds. (Cambridge, MA: Academic Press), pp. 59-81.
  3. Bauer, O., Sharir, A., Kimura, A., Hantisteanu, S., Takeda, S., and Groner, Y. (2015). Loss of osteoblast Runx3 produces severe congenital osteopenia. Mol. Cell. Biol. 35, 1097-1109. https://doi.org/10.1128/MCB.01106-14
  4. Bradley, J.P., Levine, J.P., Roth, D.A., McCarthy, J.G., and Longaker, M.T. (1996). Studies in cranial suture biology: IV. temporal sequence of posterior frontal cranial suture fusion in the mouse. Plast. Reconstr. Surg. 98, 1039-1045. https://doi.org/10.1097/00006534-199611000-00018
  5. Cao, K., Wei, L., Zhang, Z., Guo, L., Zhang, C., Li, Y., Sun, C., Sun, X., Wang, S., Li, P., et al. (2014). Decreased histone deacetylase 4 is associated with human osteoarthritis cartilage degeneration by releasing histone deacetylase 4 inhibition of runt-related transcription factor-2 and increasing osteoarthritis-related genes: a novel mechanism of human osteoarthritis cartilage degeneration. Arthritis Res. Ther. 16, 491. https://doi.org/10.1186/s13075-014-0491-3
  6. Catheline, S.E., Hoak, D., Chang, M., Ketz, J.P., Hilton, M.J., Zuscik, M.J., and Jonason, J.H. (2019). Chondrocyte-specific RUNX2 overexpression accelerates post-traumatic osteoarthritis progression in adult mice. J. Bone Miner. Res. 34, 1676-1689. https://doi.org/10.1002/jbmr.3737
  7. Chen, W., Ma, J., Zhu, G., Jules, J., Wu, M., McConnell, M., Tian, F., Paulson, C., Zhou, X., Wang, L., et al. (2014). Cbfbeta deletion in mice recapitulates cleidocranial dysplasia and reveals multiple functions of Cbfbeta required for skeletal development. Proc. Natl. Acad. Sci. U. S. A. 111, 8482-8487. https://doi.org/10.1073/pnas.1310617111
  8. Day, T.F., Guo, X., Garrett-Beal, L., and Yang, Y. (2005). Wnt/betacatenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev. Cell 8, 739-750. https://doi.org/10.1016/j.devcel.2005.03.016
  9. Ducy, P., Zhang, R., Geoffroy, V., Ridall, A.L., and Karsenty, G. (1997). Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89, 747-754. https://doi.org/10.1016/S0092-8674(00)80257-3
  10. Enomoto, H., Enomoto-Iwamoto, M., Iwamoto, M., Nomura, S., Himeno, M., Kitamura, Y., Kishimoto, T., and Komori, T. (2000). Cbfa1 is a positive regulatory factor in chondrocyte maturation. J. Biol. Chem. 275, 8695-8702. https://doi.org/10.1074/jbc.275.12.8695
  11. Fei, T., Mengrui, W., Lianfu, D., Guochun, Z., Junqing, M., Bo, G., Lin, W., Yi‐ Ping, L., and Wei, C. (2014). Core binding factor beta (Cbf$\beta$) controls the balance of chondrocyte proliferation and differentiation by upregulating Indian hedgehog (Ihh) expression and inhibiting parathyroid hormonerelated protein receptor (PPR) expression in postnatal cartilage and bone formation. J. Bone Miner. Res. 29, 1564-1574. https://doi.org/10.1002/jbmr.2275
  12. Fujita, T., Azuma, Y., Fukuyama, R., Hattori, Y., Yoshida, C., Koida, M., Ogita, K., and Komori, T. (2004). Runx2 induces osteoblast and chondrocyte differentiation and enhances their migration by coupling with PI3K-Akt signaling. J. Cell Biol. 166, 85-95. https://doi.org/10.1083/jcb.200401138
  13. Galindo, M., Pratap, J., Young, D.W., Hovhannisyan, H., Im, H.J., Choi, J.Y., Lian, J.B., Stein, J.L., Stein, G.S., and van Wijnen, A.J. (2005). The bonespecific expression of Runx2 oscillates during the cell cycle to support a G1-related antiproliferative function in osteoblasts. J. Biol. Chem. 280, 20274-20285. https://doi.org/10.1074/jbc.M413665200
  14. Ge, C., Xiao, G., Jiang, D., Yang, Q., Hatch, N.E., Roca, H., and Franceschi, R.T. (2009). Identification and functional characterization of ERK/MAPK phosphorylation sites in the Runx2 transcription factor. J. Biol. Chem. 284, 32533-32543. https://doi.org/10.1074/jbc.M109.040980
  15. Ghali, O., Chauveau, C., Hardouin, P., Broux, O., and Devedjian, J.C. (2010). TNF‐$\alpha$'s effects on proliferation and apoptosis in human mesenchymal stem cells depend on RUNX2 expression. J. Bone Miner. Res. 25, 1616-1626. https://doi.org/10.1002/jbmr.52
  16. Harada, H., Tagashira, S., Fujiwara, M., Ogawa, S., Katsumata, T., Yamaguchi, A., Komori, T., and Nakatsuka, M. (1999). Cbfa1 isoforms exert functional differences in osteoblast differentiation. J. Biol. Chem. 274, 6972-6978. https://doi.org/10.1074/jbc.274.11.6972
  17. Hess, J., Porte, D., Munz, C., and Angel, P. (2001). AP-1 and Cbfa/runt physically interact and regulate parathyroid hormone-dependent MMP13 expression in osteoblasts through a new osteoblast-specific element 2/AP-1 composite element. J. Biol. Chem. 276, 20029-20038. https://doi.org/10.1074/jbc.M010601200
  18. Hill, T.P., Spater, D., Taketo, M.M., Birchmeier, W., and Hartmann, C. (2005). Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev. Cell 8, 727-738. https://doi.org/10.1016/j.devcel.2005.02.013
  19. Hirata, M., Kugimiya, F., Fukai, A., Saito, T., Yano, F., Ikeda, T., Mabuchi, A., Sapkota, B.R., Akune, T., Nishida, N., et al. (2012). C/EBPbeta and RUNX2 cooperate to degrade cartilage with MMP-13 as the target and HIF-2alpha as the inducer in chondrocytes. Hum. Mol. Genet. 21, 1111-1123. https://doi.org/10.1093/hmg/ddr540
  20. Hu, H., Hilton, M.J., Tu, X., Yu, K., Ornitz, D.M., and Long, F. (2005). Sequential roles of hedgehog and Wnt signaling in osteoblast development. Development 132, 49-60. https://doi.org/10.1242/dev.01564
  21. Huang, L.F., Fukai, N., Selby, P.B., Olsen, B.R., and Mundlos, S. (1997). Mouse clavicular development: analysis of wild-type and cleidocranial dysplasia mutant mice. Dev. Dyn. 210, 33-40. https://doi.org/10.1002/(SICI)1097-0177(199709)210:1<33::AID-AJA4>3.0.CO;2-2
  22. Inada, M., Yasui, T., Nomura, S., Miyake, S., Deguchi, K., Himeno, M., Sato, M., Yamagiwa, H., Kimura, T., Yasui, N., et al. (1999). Maturational disturbance of chondrocytes in Cbfa1-deficient mice. Dev. Dyn. 214, 279-290. https://doi.org/10.1002/(SICI)1097-0177(199904)214:4<279::AID-AJA1>3.0.CO;2-W
  23. Iwamoto, M., Kitagaki, J., Tamamura, Y., Gentili, C., Koyama, E., Enomoto, H., Komori, T., Pacifici, M., and Enomoto-Iwamoto, M. (2003). Runx2 expression and action in chondrocytes are regulated by retinoid signaling and parathyroid hormone-related peptide (PTHrP). Osteoarthr. Cartil. 11, 6-15. https://doi.org/10.1053/joca.2002.0860
  24. Jiang, Q., Qin, X., Kawane, T., Komori, H., Matsuo, Y., Taniuchi, I., Ito, K., Izumi, S.I., and Komori, T. (2016). Cbfb2 isoform dominates more potent Cbfb1 and is required for skeletal development. J. Bone Miner. Res. 31, 1391-1404. https://doi.org/10.1002/jbmr.2814
  25. Jimenez, M.J., Balbin, M., Lopez, J.M., Alvarez, J., Komori, T., and Lopez-Otin, C. (1999). Collagenase 3 is a target of Cbfa1, a transcription factor of the runt gene family involved in bone formation. Mol. Cell. Biol. 19, 4431-4442. https://doi.org/10.1128/MCB.19.6.4431
  26. Kamekura, S., Kawasaki, Y., Hoshi, K., Shimoaka, T., Chikuda, H., Maruyama, Z., Komori, T., Sato, S., Takeda, S., Karsenty, G., et al. (2006). Contribution of runt-related transcription factor 2 to the pathogenesis of osteoarthritis in mice after induction of knee joint instability. Arthritis Rheum. 54, 2462-2470. https://doi.org/10.1002/art.22041
  27. Kawane, T., Komori, H., Liu, W., Moriishi, T., Miyazaki, T., Mori, M., Matsuo, Y., Takada, Y., Izumi, S., Jiang, Q., et al. (2014). Dlx5 and mef2 regulate a novel Runx2 enhancer for osteoblast-specific expression. J. Bone Miner. Res. 29, 1960-1969. https://doi.org/10.1002/jbmr.2240
  28. Kawane, T., Qin, X., Jiang, Q., Miyazaki, T., Komori, H., Yoshida, C.A., Matsuura-Kawata, V., Sakane, C., Matsuo, Y., Nagai, K., et al. (2018). Runx2 is required for the proliferation of osteoblast progenitors and induces proliferation by regulating Fgfr2 and Fgfr3. Sci. Rep. 8, 13551. https://doi.org/10.1038/s41598-018-31853-0
  29. Kim, I.S., Otto, F., Zabel, B., and Mundlos, S. (1999). Regulation of chondrocyte differentiation by Cbfa1. Mech. Dev. 80, 159-170. https://doi.org/10.1016/S0925-4773(98)00210-X
  30. Komori, T. (2002). Runx2, a multifunctional transcription factor in skeletal development. J. Cell. Biochem. 87, 1-8. https://doi.org/10.1002/jcb.10276
  31. Komori, T. (2018). Runx2, an inducer of osteoblast and chondrocyte differentiation. Histochem. Cell Biol. 149, 313-323. https://doi.org/10.1007/s00418-018-1640-6
  32. Komori, T., Yagi, H., Nomura, S., Yamaguchi, A., Sasaki, K., Deguchi, K., Shimizu, Y., Bronson, R.T., Gao, Y.H., Inada, M., et al. (1997). Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89, 755-764. https://doi.org/10.1016/S0092-8674(00)80258-5
  33. Krishnan, V., Moore, T.L., Ma, Y.L., Helvering, L.M., Frolik, C.A., Valasek, K.M., Ducy, P., and Geiser, A.G. (2003). Parathyroid hormone bone anabolic action requires Cbfa1/Runx2-dependent signaling. Mol. Endocrinol. 17, 423-435. https://doi.org/10.1210/me.2002-0225
  34. Kundu, M., Javed, A., Jeon, J.P., Horner, A., Shum, L., Eckhaus, M., Muenke, M., Lian, J.B., Yang, Y., Nuckolls, G.H., et al. (2002). Cbfbeta interacts with Runx2 and has a critical role in bone development. Nat. Genet. 32, 639-644. https://doi.org/10.1038/ng1050
  35. Lee, B., Thirunavukkarasu, K., Zhou, L., Pastore, L., Baldini, A., Hecht, J., Geoffroy, V., Ducy, P., and Karsenty, G. (1997). Missense mutations abolishing DNA binding of the osteoblast-specific transcription factor OSF2/CBFA1 in cleidocranial dysplasia. Nat. Genet. 16, 307-310. https://doi.org/10.1038/ng0797-307
  36. Lefebvre, V.R. and Smits, P. (2005). Transcriptional control of chondrocyte fate and differentiation. Birth Defects Res. C Embryo Today 75, 200-212. https://doi.org/10.1002/bdrc.20048
  37. Liao, L., Zhang, S., Gu, J., Takarada, T., Yoneda, Y., Huang, J., Zhao, L., Oh, C.D., Li, J., Wang, B., et al. (2017). Deletion of Runx2 in articular chondrocytes decelerates the progression of DMM-induced osteoarthritis in adult mice. Sci. Rep. 7, 2371. https://doi.org/10.1038/s41598-017-02490-w
  38. Lim, K.E., Park, N.R., Che, X., Han, M.S., Jeong, J.H., Kim, S.Y., Park, C.Y., Akiyama, H., Kim, J.E., Ryoo, H.M., et al. (2015). Core binding factor beta of osteoblasts maintains cortical bone mass via stabilization of Runx2 in mice. J. Bone Miner. Res. 30, 715-722. https://doi.org/10.1002/jbmr.2397
  39. Long, F., Chung, U.I., Ohba, S., McMahon, J., Kronenberg, H.M., and McMahon, A.P. (2004). Ihh signaling is directly required for the osteoblast lineage in the endochondral skeleton. Development 131, 1309-1318. https://doi.org/10.1242/dev.01006
  40. Lucero, C.M., Vega, O.A., Osorio, M.M., Tapia, J.C., Antonelli, M., Stein, G.S., Van Wijnen, A.J., and Galindo, M.A. (2013). The cancer‐related transcription factor Runx2 modulates cell proliferation in human osteosarcoma cell lines. J. Cell. Physiol. 228, 714-723. https://doi.org/10.1002/jcp.24218
  41. Maeno, T., Moriishi, T., Yoshida, C.A., Komori, H., Kanatani, N., Izumi, S., Takaoka, K., and Komori, T. (2011). Early onset of Runx2 expression caused craniosynostosis, ectopic bone formation, and limb defects. Bone 49, 673-682. https://doi.org/10.1016/j.bone.2011.07.023
  42. Maruyama, Z., Yoshida, C.A., Furuichi, T., Amizuka, N., Ito, M., Fukuyama, R., Miyazaki, T., Kitaura, H., Nakamura, K., Fujita, T., et al. (2007). Runx2 determines bone maturity and turnover rate in postnatal bone development and is involved in bone loss in estrogen deficiency. Dev. Dyn. 236, 1876-1890. https://doi.org/10.1002/dvdy.21187
  43. Miller, J., Horner, A., Stacy, T., Lowrey, C., Lian, J.B., Stein, G., Nuckolls, G.H., and Speck, N.A. (2002). The core-binding factor beta subunit is required for bone formation and hematopoietic maturation. Nat. Genet. 32, 645-649. https://doi.org/10.1038/ng1049
  44. Mundlos, S., Otto, F., Mundlos, C., Mulliken, J.B., Aylsworth, A.S., Albright, S., Lindhout, D., Cole, W.G., Henn, W., Knoll, J.H., et al. (1997). Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 89, 773-779. https://doi.org/10.1016/S0092-8674(00)80260-3
  45. Nakashima, K., Zhou, X., Kunkel, G., Zhang, Z., Deng, J.M., Behringer, R.R., and de Crombrugghe, B. (2002). The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108, 17-29. https://doi.org/10.1016/S0092-8674(01)00622-5
  46. Ogawa, E., Inuzuka, M., Maruyama, M., Satake, M., Naito-Fujimoto, M., Ito, Y., and Shigesada, K. (1993). Molecular cloning and characterization of PEBP2 beta, the heterodimeric partner of a novel Drosophila runt-related DNA binding protein PEBP2 alpha. Virology 194, 314-331. https://doi.org/10.1006/viro.1993.1262
  47. Ohuchi, H., Nakagawa, T., Yamamoto, A., Araga, A., Ohata, T., Ishimaru, Y., Yoshioka, H., Kuwana, T., Nohno, T., Yamasaki, M., et al. (1997). The mesenchymal factor, FGF10, initiates and maintains the outgrowth of the chick limb bud through interaction with FGF8, an apical ectodermal factor. Development 124, 2235-2244. https://doi.org/10.1242/dev.124.11.2235
  48. Okuda, T., van Deursen, J., Hiebert, S.W., Grosveld, G., and Downing, J.R. (1996). AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84, 321-330. https://doi.org/10.1016/S0092-8674(00)80986-1
  49. Otto, F., Thornell, A.P., Crompton, T., Denzel, A., Gilmour, K.C., Rosewell, I.R., Stamp, G.W., Beddington, R.S., Mundlos, S., Olsen, B.R., et al. (1997). Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89, 765-771. https://doi.org/10.1016/S0092-8674(00)80259-7
  50. Owens, T.W., Rogers, R.L., Best, S.A., Ledger, A., Mooney, A.M., Ferguson, A., Shore, P., Swarbrick, A., Ormandy, C.J., Simpson, P.T., et al. (2014). Runx2 is a novel regulator of mammary epithelial cell fate in development and breast cancer. Cancer Res. 74, 5277-5286. https://doi.org/10.1158/0008-5472.CAN-14-0053
  51. Park, O.J., Kim, H.J., Woo, K.M., Baek, J.H., and Ryoo, H.M. (2010). FGF2-activated ERK mitogen-activated protein kinase enhances Runx2 acetylation and stabilization. J. Biol. Chem. 285, 3568-3574. https://doi.org/10.1074/jbc.M109.055053
  52. Pratap, J., Galindo, M., Zaidi, S.K., Vradii, D., Bhat, B.M., Robinson, J.A., Choi, J.Y., Komori, T., Stein, J.L., and Lian, J.B. (2003). Cell growth regulatory role of Runx2 during proliferative expansion of preosteoblasts. Cancer Res. 63, 5357-5362.
  53. Qin, X., Jiang, Q., Matsuo, Y., Kawane, T., Komori, H., Moriishi, T., Taniuchi, I., Ito, K., Kawai, Y., Rokutanda, S., et al. (2015). Cbfb regulates bone development by stabilizing Runx family proteins. J. Bone Miner. Res. 30, 706-714. https://doi.org/10.1002/jbmr.2379
  54. Qin, X., Jiang, Q., Miyazaki, T., and Komori, T. (2019). Runx2 regulates cranial suture closure by inducing hedgehog, Fgf, Wnt and Pthlh signaling pathway gene expressions in suture mesenchymal cells. Hum. Mol. Genet. 28, 896-911. https://doi.org/10.1093/hmg/ddy386
  55. Rodda, S.J. and McMahon, A.P. (2006). Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 133, 3231-3244. https://doi.org/10.1242/dev.02480
  56. Sahar, D.E., Longaker, M.T., and Quarto, N. (2005). Sox9 neural crest determinant gene controls patterning and closure of the posterior frontal cranial suture. Dev. Biol. 280, 344-361. https://doi.org/10.1016/j.ydbio.2005.01.022
  57. Sasaki, K., Yagi, H., Bronson, R.T., Tominaga, K., Matsunashi, T., Deguchi, K., Tani, Y., Kishimoto, T., and Komori, T. (1996). Absence of fetal liver hematopoiesis in mice deficient in transcriptional coactivator core binding factor beta. Proc. Natl. Acad. Sci. U. S. A. 93, 12359-12363. https://doi.org/10.1073/pnas.93.22.12359
  58. Selvamurugan, N., Pulumati, M.R., Tyson, D.R., and Partridge, N.C. (2000). Parathyroid hormone regulation of the rat collagenase-3 promoter by protein kinase A-dependent transactivation of core binding factor alpha1. J. Biol. Chem. 275, 5037-5042. https://doi.org/10.1074/jbc.275.7.5037
  59. Simpson, F., Kerr, M.C., and Wicking, C. (2009). Trafficking, development and hedgehog. Mech. Dev. 126, 279-288. https://doi.org/10.1016/j.mod.2009.01.007
  60. St-Jacques, B., Hammerschmidt, M., and McMahon, A.P. (1999). Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev. 13, 2072-2086. https://doi.org/10.1101/gad.13.16.2072
  61. Takahashi, A., de Andres, M.C., Hashimoto, K., Itoi, E., Otero, M., Goldring, M.B., and Oreffo, R.O.C. (2017). DNA methylation of the RUNX2 P1 promoter mediates MMP13 transcription in chondrocytes. Sci. Rep. 7, 7771. https://doi.org/10.1038/s41598-017-08418-8
  62. Takarada, T., Hinoi, E., Nakazato, R., Ochi, H., Xu, C., Tsuchikane, A., Takeda, S., Karsenty, G., Abe, T., Kiyonari, H., et al. (2013). An analysis of skeletal development in osteoblast-specific and chondrocyte-specific runt-related transcription factor-2 (Runx2) knockout mice. J. Bone Miner. Res. 28, 2064-2069. https://doi.org/10.1002/jbmr.1945
  63. Takeda, S., Bonnamy, J.P., Owen, M.J., Ducy, P., and Karsenty, G. (2001). Continuous expression of Cbfa1 in nonhypertrophic chondrocytes uncovers its ability to induce hypertrophic chondrocyte differentiation and partially rescues Cbfa1-deficient mice. Genes Dev. 15, 467-481. https://doi.org/10.1101/gad.845101
  64. Taniuchi, I., Osato, M., Egawa, T., Sunshine, M.J., Bae, S.C., Komori, T., Ito, Y., and Littman, D.R. (2002). Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. Cell 111, 621-633. https://doi.org/10.1016/S0092-8674(02)01111-X
  65. Tetsunaga, T., Nishida, K., Furumatsu, T., Naruse, K., Hirohata, S., Yoshida, A., Saito, T., and Ozaki, T. (2011). Regulation of mechanical stress-induced MMP-13 and ADAMTS-5 expression by RUNX-2 transcriptional factor in SW1353 chondrocyte-like cells. Osteoarthr. Cartil. 19, 222-232. https://doi.org/10.1016/j.joca.2010.11.004
  66. Thirunavukkarasu, K., Pei, Y., and Wei, T. (2007). Characterization of the human ADAMTS-5 (aggrecanase-2) gene promoter. Mol. Biol. Rep. 34, 225-231. https://doi.org/10.1007/s11033-006-9037-3
  67. Thomas, D.M., Johnson, S.A., Sims, N.A., Trivett, M.K., Slavin, J.L., Rubin, B.P., Waring, P., McArthur, G.A., Walkley, C.R., and Holloway, A.J. (2004). Terminal osteoblast differentiation, mediated by runx2 and p27KIP1, is disrupted in osteosarcoma. J. Cell Biol. 167, 925-934. https://doi.org/10.1083/jcb.200409187
  68. Ueta, C., Iwamoto, M., Kanatani, N., Yoshida, C., Liu, Y., Enomoto-Iwamoto, M., Ohmori, T., Enomoto, H., Nakata, K., Takada, K., et al. (2001). Skeletal malformations caused by overexpression of Cbfa1 or its dominant negative form in chondrocytes. J. Cell Biol. 153, 87-100. https://doi.org/10.1083/jcb.153.1.87
  69. Vortkamp, A., Lee, K., Lanske, B., Segre, G.V., Kronenberg, H.M., and Tabin, C.J. (1996). Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science (New York, NY) 273, 613-622. https://doi.org/10.1126/science.273.5275.613
  70. Wang, Q., Stacy, T., Binder, M., Marin-Padilla, M., Sharpe, A.H., and Speck, N.A. (1996a). Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc. Natl. Acad. Sci. U. S. A. 93, 3444-3449. https://doi.org/10.1073/pnas.93.8.3444
  71. Wang, Q., Stacy, T., Miller, J.D., Lewis, A.F., Gu, T.L., Huang, X., Bushweller, J.H., Bories, J.C., Alt, F.W., Ryan, G., et al. (1996b). The CBFbeta subunit is essential for CBFalpha2 (AML1) function in vivo. Cell 87, 697-708. https://doi.org/10.1016/S0092-8674(00)81389-6
  72. Wang, X., Manner, P.A., Horner, A., Shum, L., Tuan, R.S., and Nuckolls, G.H. (2004). Regulation of MMP-13 expression by RUNX2 and FGF2 in osteoarthritic cartilage. Osteoarthr. Cartil. 12, 963-973. https://doi.org/10.1016/j.joca.2004.08.008
  73. Wu, M., Li, C., Zhu, G., Wang, Y., Jules, J., Lu, Y., McConnell, M., Wang, Y.J., Shao, J.Z., Li, Y.P., et al. (2014a). Deletion of core-binding factor beta (Cbfbeta) in mesenchymal progenitor cells provides new insights into Cbfbeta/Runxs complex function in cartilage and bone development. Bone 65, 49-59. https://doi.org/10.1016/j.bone.2014.04.031
  74. Wu, M., Li, Y.P., Zhu, G., Lu, Y., Wang, Y., Jules, J., McConnell, M., Serra, R., Shao, J.Z., and Chen, W. (2014b). Chondrocyte-specific knockout of Cbfbeta reveals the indispensable function of Cbfbeta in chondrocyte maturation, growth plate development and trabecular bone formation in mice. Int. J. Biol. Sci. 10, 861-872. https://doi.org/10.7150/ijbs.8521
  75. Xiao, G., Jiang, D., Gopalakrishnan, R., and Franceschi, R.T. (2002). Fibroblast growth factor 2 induction of the osteocalcin gene requires MAPK activity and phosphorylation of the osteoblast transcription factor, Cbfa1/Runx2. J. Biol. Chem. 277, 36181-36187. https://doi.org/10.1074/jbc.M206057200
  76. Xiao, Z.S., Hjelmeland, A.B., and Quarles, L.D. (2004). Selective deficiency of the "bone-related" Runx2-II unexpectedly preserves osteoblast-mediated skeletogenesis. J. Biol. Chem. 279, 20307-20313. https://doi.org/10.1074/jbc.M401109200
  77. Xu, X., Weinstein, M., Li, C., Naski, M., Cohen, R.I., Ornitz, D.M., Leder, P., and Deng, C. (1998). Fibroblast growth factor receptor 2 (FGFR2)-mediated reciprocal regulation loop between FGF8 and FGF10 is essential for limb induction. Development 125, 753-765. https://doi.org/10.1242/dev.125.4.753
  78. Yoshida, C.A., Furuichi, T., Fujita, T., Fukuyama, R., Kanatani, N., Kobayashi, S., Satake, M., Takada, K., and Komori, T. (2002). Core-binding factor beta interacts with Runx2 and is required for skeletal development. Nat. Genet. 32, 633-638. https://doi.org/10.1038/ng1015
  79. Yoshida, C.A., Komori, H., Maruyama, Z., Miyazaki, T., Kawasaki, K., Furuichi, T., Fukuyama, R., Mori, M., Yamana, K., Nakamura, K., et al. (2012). SP7 inhibits osteoblast differentiation at a late stage in mice. PLoS One 7, e32364. https://doi.org/10.1371/journal.pone.0032364
  80. Yoshida, C.A., Yamamoto, H., Fujita, T., Furuichi, T., Ito, K., Inoue, K., Yamana, K., Zanma, A., Takada, K., Ito, Y., et al. (2004). Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog. Genes Dev. 18, 952-963. https://doi.org/10.1101/gad.1174704

Cited by

  1. Effects of Low-Level Er:YAG Laser Irradiation on Proliferation and Calcification of Primary Osteoblast-Like Cells Isolated From Rat Calvaria vol.8, 2020, https://doi.org/10.3389/fcell.2020.00459
  2. Role of Signal Transduction Pathways and Transcription Factors in Cartilage and Joint Diseases vol.21, pp.4, 2020, https://doi.org/10.3390/ijms21041340
  3. Antxr1, Which is a Target of Runx2, Regulates Chondrocyte Proliferation and Apoptosis vol.21, pp.7, 2020, https://doi.org/10.3390/ijms21072425
  4. Methylpiperidinopyrazole Attenuates Estrogen-Induced Mitochondrial Energy Production and Subsequent Osteoblast Maturation via an Estrogen Receptor Alpha-Dependent Mechanism vol.25, pp.12, 2020, https://doi.org/10.3390/molecules25122876
  5. Healthy bone tissue homeostasis vol.52, pp.8, 2020, https://doi.org/10.1038/s12276-020-0472-3
  6. Autophagy was involved in tumor necrosis factor-α-inhibited osteogenic differentiation of murine calvarial osteoblasts through Wnt/β-catenin pathway vol.67, 2020, https://doi.org/10.1016/j.tice.2020.101401
  7. In Vitro Cytological Responses against Laser Photobiomodulation for Periodontal Regeneration vol.21, pp.23, 2020, https://doi.org/10.3390/ijms21239002
  8. Circular RNA_0062582 promotes osteogenic differentiation of human bone marrow mesenchymal stem cells via regulation of microRNA-145/CBFB axis vol.12, pp.1, 2020, https://doi.org/10.1080/21655979.2021.1921553
  9. An Exploration of Mutagenesis in a Family with Cleidocranial Dysplasia without RUNX2 Mutation vol.12, 2020, https://doi.org/10.3389/fgene.2021.748111
  10. The Aqueous Extract of Eucommia Leaves Promotes Proliferation, Differentiation, and Mineralization of Osteoblast-Like MC3T3-E1 Cells vol.2021, 2021, https://doi.org/10.1155/2021/3641317
  11. Menaquinone-7 Supplementation Improves Osteogenesis in Pluripotent Stem Cell Derived Mesenchymal Stem Cells vol.8, 2021, https://doi.org/10.3389/fcell.2020.618760
  12. TRIM16 Promotes Osteogenic Differentiation of Human Periodontal Ligament Stem Cells by Modulating CHIP-Mediated Degradation of RUNX2 vol.8, 2021, https://doi.org/10.3389/fcell.2020.625105
  13. Chronic Intermittent Hypobaric Hypoxia Enhances Bone Fracture Healing vol.11, 2020, https://doi.org/10.3389/fendo.2020.582670
  14. Runx Transcription Factors in T Cells-What Is Beyond Thymic Development? vol.12, 2020, https://doi.org/10.3389/fimmu.2021.701924
  15. eIF2α-ATF4 Pathway Activated by a Change in the Calcium Environment Participates in BCP-Mediated Bone Regeneration vol.7, pp.7, 2020, https://doi.org/10.1021/acsbiomaterials.0c01802
  16. The RNA demethylase ALKBH5 promotes osteoblast differentiation by modulating Runx2 mRNA stability vol.595, pp.15, 2020, https://doi.org/10.1002/1873-3468.14145
  17. Regulatory Role of microRNAs Targeting the Transcription Co-Factor ZNF521 in Normal Tissues and Cancers vol.22, pp.16, 2021, https://doi.org/10.3390/ijms22168461
  18. RUNT‐RELATED TRANSCRIPTION FACTOR‐2 (RUNX2) is required for bone matrix protein gene expression in committed osteoblasts in mice vol.36, pp.10, 2020, https://doi.org/10.1002/jbmr.4386
  19. Protection against Oxidative Stress-Induced Apoptosis by Fermented Sea Tangle (Laminaria japonica Aresch) in Osteoblastic MC3T3-E1 Cells through Activation of Nrf2 Signaling Pathway vol.10, pp.11, 2021, https://doi.org/10.3390/foods10112807
  20. One oncogene, several vulnerabilities: EWS/FLI targeted therapies for Ewing sarcoma vol.31, 2020, https://doi.org/10.1016/j.jbo.2021.100404
  21. Bone remodelling patterns around orthodontic mini-implants migrating in bone: an experimental study in rat vertebrae vol.43, pp.6, 2020, https://doi.org/10.1093/ejo/cjab065